![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > compneOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of compne 39419 as of 11-Nov-2021. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
compneOLD | ⊢ (V ∖ 𝐴) ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vn0 4126 | . 2 ⊢ V ≠ ∅ | |
2 | ssun1 3975 | . . . . . . . 8 ⊢ V ⊆ (V ∪ 𝐴) | |
3 | ssv 3822 | . . . . . . . 8 ⊢ (V ∪ 𝐴) ⊆ V | |
4 | 2, 3 | eqssi 3815 | . . . . . . 7 ⊢ V = (V ∪ 𝐴) |
5 | undif1 4238 | . . . . . . 7 ⊢ ((V ∖ 𝐴) ∪ 𝐴) = (V ∪ 𝐴) | |
6 | 4, 5 | eqtr4i 2825 | . . . . . 6 ⊢ V = ((V ∖ 𝐴) ∪ 𝐴) |
7 | uneq1 3959 | . . . . . 6 ⊢ ((V ∖ 𝐴) = 𝐴 → ((V ∖ 𝐴) ∪ 𝐴) = (𝐴 ∪ 𝐴)) | |
8 | 6, 7 | syl5eq 2846 | . . . . 5 ⊢ ((V ∖ 𝐴) = 𝐴 → V = (𝐴 ∪ 𝐴)) |
9 | unidm 3955 | . . . . 5 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
10 | 8, 9 | syl6eq 2850 | . . . 4 ⊢ ((V ∖ 𝐴) = 𝐴 → V = 𝐴) |
11 | difabs 4093 | . . . . . . 7 ⊢ ((V ∖ 𝐴) ∖ 𝐴) = (V ∖ 𝐴) | |
12 | id 22 | . . . . . . 7 ⊢ ((V ∖ 𝐴) = 𝐴 → (V ∖ 𝐴) = 𝐴) | |
13 | 11, 12 | syl5req 2847 | . . . . . 6 ⊢ ((V ∖ 𝐴) = 𝐴 → 𝐴 = ((V ∖ 𝐴) ∖ 𝐴)) |
14 | difeq1 3920 | . . . . . 6 ⊢ ((V ∖ 𝐴) = 𝐴 → ((V ∖ 𝐴) ∖ 𝐴) = (𝐴 ∖ 𝐴)) | |
15 | 13, 14 | eqtrd 2834 | . . . . 5 ⊢ ((V ∖ 𝐴) = 𝐴 → 𝐴 = (𝐴 ∖ 𝐴)) |
16 | difid 4150 | . . . . 5 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
17 | 15, 16 | syl6eq 2850 | . . . 4 ⊢ ((V ∖ 𝐴) = 𝐴 → 𝐴 = ∅) |
18 | 10, 17 | eqtrd 2834 | . . 3 ⊢ ((V ∖ 𝐴) = 𝐴 → V = ∅) |
19 | 18 | necon3i 3004 | . 2 ⊢ (V ≠ ∅ → (V ∖ 𝐴) ≠ 𝐴) |
20 | 1, 19 | ax-mp 5 | 1 ⊢ (V ∖ 𝐴) ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ≠ wne 2972 Vcvv 3386 ∖ cdif 3767 ∪ cun 3768 ∅c0 4116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rab 3099 df-v 3388 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |