Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbingOLD Structured version   Visualization version   GIF version

Theorem csbingOLD 39575
Description: Distribute proper substitution through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.) Obsolete as of 18-Aug-2018. Use csbin 4155 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
csbingOLD (𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))

Proof of Theorem csbingOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3685 . . 3 (𝑦 = 𝐴𝑦 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥(𝐶𝐷))
2 csbeq1 3685 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
3 csbeq1 3685 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐷 = 𝐴 / 𝑥𝐷)
42, 3ineq12d 3966 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐶𝑦 / 𝑥𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
51, 4eqeq12d 2786 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐶𝐷) = (𝑦 / 𝑥𝐶𝑦 / 𝑥𝐷) ↔ 𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)))
6 vex 3354 . . 3 𝑦 ∈ V
7 nfcsb1v 3698 . . . 4 𝑥𝑦 / 𝑥𝐶
8 nfcsb1v 3698 . . . 4 𝑥𝑦 / 𝑥𝐷
97, 8nfin 3969 . . 3 𝑥(𝑦 / 𝑥𝐶𝑦 / 𝑥𝐷)
10 csbeq1a 3691 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
11 csbeq1a 3691 . . . 4 (𝑥 = 𝑦𝐷 = 𝑦 / 𝑥𝐷)
1210, 11ineq12d 3966 . . 3 (𝑥 = 𝑦 → (𝐶𝐷) = (𝑦 / 𝑥𝐶𝑦 / 𝑥𝐷))
136, 9, 12csbief 3707 . 2 𝑦 / 𝑥(𝐶𝐷) = (𝑦 / 𝑥𝐶𝑦 / 𝑥𝐷)
145, 13vtoclg 3417 1 (𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  csb 3682  cin 3722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-in 3730
This theorem is referenced by:  onfrALTlem4VD  39642  csbresgVD  39651
  Copyright terms: Public domain W3C validator