![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-clwwlknOLD | Structured version Visualization version GIF version |
Description: Obsolete version of df-clwwlkn 27328 as of 22-Mar-2022. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-clwwlknOLD | ⊢ ClWWalksNOLD = (𝑛 ∈ ℕ, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cclwwlknold 27327 | . 2 class ClWWalksNOLD | |
2 | vn | . . 3 setvar 𝑛 | |
3 | vg | . . 3 setvar 𝑔 | |
4 | cn 11312 | . . 3 class ℕ | |
5 | cvv 3385 | . . 3 class V | |
6 | vw | . . . . . . 7 setvar 𝑤 | |
7 | 6 | cv 1652 | . . . . . 6 class 𝑤 |
8 | chash 13370 | . . . . . 6 class ♯ | |
9 | 7, 8 | cfv 6101 | . . . . 5 class (♯‘𝑤) |
10 | 2 | cv 1652 | . . . . 5 class 𝑛 |
11 | 9, 10 | wceq 1653 | . . . 4 wff (♯‘𝑤) = 𝑛 |
12 | 3 | cv 1652 | . . . . 5 class 𝑔 |
13 | cclwwlk 27274 | . . . . 5 class ClWWalks | |
14 | 12, 13 | cfv 6101 | . . . 4 class (ClWWalks‘𝑔) |
15 | 11, 6, 14 | crab 3093 | . . 3 class {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛} |
16 | 2, 3, 4, 5, 15 | cmpt2 6880 | . 2 class (𝑛 ∈ ℕ, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) |
17 | 1, 16 | wceq 1653 | 1 wff ClWWalksNOLD = (𝑛 ∈ ℕ, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) |
Colors of variables: wff setvar class |
This definition is referenced by: clwwlknOLD 27331 |
Copyright terms: Public domain | W3C validator |