![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcleqf | Structured version Visualization version GIF version |
Description: Equality connective between classes. Same as dfcleq 2771, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
dfcleqf.1 | ⊢ Ⅎ𝑥𝐴 |
dfcleqf.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
dfcleqf | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleqf.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | dfcleqf.2 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | cleqf 2963 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∀wal 1599 = wceq 1601 ∈ wcel 2107 Ⅎwnfc 2919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-cleq 2770 df-clel 2774 df-nfc 2921 |
This theorem is referenced by: ssmapsn 40333 infnsuprnmpt 40380 preimagelt 41843 preimalegt 41844 pimrecltpos 41850 pimrecltneg 41864 smfaddlem1 41902 smflimsuplem7 41963 |
Copyright terms: Public domain | W3C validator |