![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjxwwlksnOLD | Structured version Visualization version GIF version |
Description: Obsolete version of disjxwwlksn 27292 as of 12-Oct-2022. (Contributed by Alexander van der Vekens, 29-Jul-2018.) (Revised by AV, 19-Apr-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
wwlksnexthasheq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wwlksnexthasheq.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
disjxwwlksnOLD | ⊢ Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr 〈0, 𝑁〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1127 | . . . . 5 ⊢ (((𝑥 substr 〈0, 𝑁〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 substr 〈0, 𝑁〉) = 𝑦) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ Word 𝑉 → (((𝑥 substr 〈0, 𝑁〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 substr 〈0, 𝑁〉) = 𝑦)) |
3 | 2 | ss2rabi 3905 | . . 3 ⊢ {𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr 〈0, 𝑁〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 substr 〈0, 𝑁〉) = 𝑦} |
4 | 3 | rgenw 3106 | . 2 ⊢ ∀𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr 〈0, 𝑁〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 substr 〈0, 𝑁〉) = 𝑦} |
5 | disjxwrdOLD 13781 | . 2 ⊢ Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ (𝑥 substr 〈0, 𝑁〉) = 𝑦} | |
6 | disjss2 4859 | . 2 ⊢ (∀𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr 〈0, 𝑁〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 substr 〈0, 𝑁〉) = 𝑦} → (Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ (𝑥 substr 〈0, 𝑁〉) = 𝑦} → Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr 〈0, 𝑁〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})) | |
7 | 4, 5, 6 | mp2 9 | 1 ⊢ Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr 〈0, 𝑁〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 {crab 3094 ⊆ wss 3792 {cpr 4400 〈cop 4404 Disj wdisj 4856 ‘cfv 6137 (class class class)co 6924 0cc0 10274 Word cword 13605 lastSclsw 13658 substr csubstr 13736 Vtxcvtx 26361 Edgcedg 26412 WWalksN cwwlksn 27192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-in 3799 df-ss 3806 df-disj 4857 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |