![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmpt2 | Structured version Visualization version GIF version |
Description: Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
fnmpt2i.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
dmmpt2 | ⊢ dom 𝐹 = (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | fnmpt2i.2 | . . 3 ⊢ 𝐶 ∈ V | |
3 | 1, 2 | fnmpt2i 7502 | . 2 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
4 | fndm 6223 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵)) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ dom 𝐹 = (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ∈ wcel 2166 Vcvv 3414 × cxp 5340 dom cdm 5342 Fn wfn 6118 ↦ cmpt2 6907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-fv 6131 df-oprab 6909 df-mpt2 6910 df-1st 7428 df-2nd 7429 |
This theorem is referenced by: 1div0 11011 swrd00 13704 swrd0 13723 pfx00 13753 pfx0 13754 repsundef 13887 cshnz 13911 cshnzOLD 13912 imasvscafn 16550 imasvscaval 16551 iscnp2 21414 xkococnlem 21833 ucnima 22455 ucnprima 22456 tngtopn 22824 1div0apr 27882 smatlem 30408 elunirnmbfm 30860 rrxsphere 43300 |
Copyright terms: Public domain | W3C validator |