Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domep Structured version   Visualization version   GIF version

Theorem domep 32294
Description: The domain of the epsilon relation is the universe. (Contributed by Scott Fenton, 27-Oct-2010.)
Assertion
Ref Expression
domep dom E = V

Proof of Theorem domep
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equid 2059 . . . 4 𝑥 = 𝑥
2 el 5083 . . . . 5 𝑦 𝑥𝑦
3 epel 5271 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
43exbii 1892 . . . . 5 (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑥𝑦)
52, 4mpbir 223 . . . 4 𝑦 𝑥 E 𝑦
61, 52th 256 . . 3 (𝑥 = 𝑥 ↔ ∃𝑦 𝑥 E 𝑦)
76abbii 2908 . 2 {𝑥𝑥 = 𝑥} = {𝑥 ∣ ∃𝑦 𝑥 E 𝑦}
8 df-v 3400 . 2 V = {𝑥𝑥 = 𝑥}
9 df-dm 5367 . 2 dom E = {𝑥 ∣ ∃𝑦 𝑥 E 𝑦}
107, 8, 93eqtr4ri 2813 1 dom E = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  wex 1823  {cab 2763  Vcvv 3398   class class class wbr 4888   E cep 5267  dom cdm 5357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4889  df-opab 4951  df-eprel 5268  df-dm 5367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator