MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemOLD Structured version   Visualization version   GIF version

Theorem efgredlemOLD 18513
Description: Obsolete proof of efgredlem 18512 as of 12-Oct-2022. (Contributed by Mario Carneiro, 30-Sep-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
Assertion
Ref Expression
efgredlemOLD ¬ 𝜑
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgredlemOLD
Dummy variables 𝑖 𝑗 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6503 . . . . . . . . . 10 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 3860 . . . . . . . . 9 𝑊 ⊆ Word (𝐼 × 2o)
4 efgredlem.2 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ dom 𝑆)
5 efgval.r . . . . . . . . . . . . . . 15 = ( ~FG𝐼)
6 efgval2.m . . . . . . . . . . . . . . 15 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
7 efgval2.t . . . . . . . . . . . . . . 15 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
8 efgred.d . . . . . . . . . . . . . . 15 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
9 efgred.s . . . . . . . . . . . . . . 15 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
101, 5, 6, 7, 8, 9efgsdm 18494 . . . . . . . . . . . . . 14 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1)))))
1110simp1bi 1181 . . . . . . . . . . . . 13 (𝐴 ∈ dom 𝑆𝐴 ∈ (Word 𝑊 ∖ {∅}))
124, 11syl 17 . . . . . . . . . . . 12 (𝜑𝐴 ∈ (Word 𝑊 ∖ {∅}))
1312eldifad 3810 . . . . . . . . . . 11 (𝜑𝐴 ∈ Word 𝑊)
14 wrdf 13579 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑊𝐴:(0..^(♯‘𝐴))⟶𝑊)
1513, 14syl 17 . . . . . . . . . 10 (𝜑𝐴:(0..^(♯‘𝐴))⟶𝑊)
16 efgredlem.1 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
17 efgredlem.3 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ dom 𝑆)
18 efgredlem.4 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
19 efgredlem.5 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
201, 5, 6, 7, 8, 9, 16, 4, 17, 18, 19efgredlema 18505 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ))
2120simpld 490 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ)
22 nnm1nn0 11661 . . . . . . . . . . . . 13 (((♯‘𝐴) − 1) ∈ ℕ → (((♯‘𝐴) − 1) − 1) ∈ ℕ0)
2321, 22syl 17 . . . . . . . . . . . 12 (𝜑 → (((♯‘𝐴) − 1) − 1) ∈ ℕ0)
2421nnred 11367 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝐴) − 1) ∈ ℝ)
2524lem1d 11287 . . . . . . . . . . . 12 (𝜑 → (((♯‘𝐴) − 1) − 1) ≤ ((♯‘𝐴) − 1))
26 eldifsni 4540 . . . . . . . . . . . . . . 15 (𝐴 ∈ (Word 𝑊 ∖ {∅}) → 𝐴 ≠ ∅)
274, 11, 263syl 18 . . . . . . . . . . . . . 14 (𝜑𝐴 ≠ ∅)
28 wrdfin 13592 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word 𝑊𝐴 ∈ Fin)
29 hashnncl 13447 . . . . . . . . . . . . . . 15 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
3013, 28, 293syl 18 . . . . . . . . . . . . . 14 (𝜑 → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
3127, 30mpbird 249 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐴) ∈ ℕ)
32 nnm1nn0 11661 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ → ((♯‘𝐴) − 1) ∈ ℕ0)
33 fznn0 12726 . . . . . . . . . . . . 13 (((♯‘𝐴) − 1) ∈ ℕ0 → ((((♯‘𝐴) − 1) − 1) ∈ (0...((♯‘𝐴) − 1)) ↔ ((((♯‘𝐴) − 1) − 1) ∈ ℕ0 ∧ (((♯‘𝐴) − 1) − 1) ≤ ((♯‘𝐴) − 1))))
3431, 32, 333syl 18 . . . . . . . . . . . 12 (𝜑 → ((((♯‘𝐴) − 1) − 1) ∈ (0...((♯‘𝐴) − 1)) ↔ ((((♯‘𝐴) − 1) − 1) ∈ ℕ0 ∧ (((♯‘𝐴) − 1) − 1) ≤ ((♯‘𝐴) − 1))))
3523, 25, 34mpbir2and 706 . . . . . . . . . . 11 (𝜑 → (((♯‘𝐴) − 1) − 1) ∈ (0...((♯‘𝐴) − 1)))
36 lencl 13593 . . . . . . . . . . . . . 14 (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0)
3713, 36syl 17 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐴) ∈ ℕ0)
3837nn0zd 11808 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐴) ∈ ℤ)
39 fzoval 12766 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
4038, 39syl 17 . . . . . . . . . . 11 (𝜑 → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
4135, 40eleqtrrd 2909 . . . . . . . . . 10 (𝜑 → (((♯‘𝐴) − 1) − 1) ∈ (0..^(♯‘𝐴)))
4215, 41ffvelrnd 6609 . . . . . . . . 9 (𝜑 → (𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊)
433, 42sseldi 3825 . . . . . . . 8 (𝜑 → (𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ Word (𝐼 × 2o))
44 lencl 13593 . . . . . . . 8 ((𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ Word (𝐼 × 2o) → (♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) ∈ ℕ0)
4543, 44syl 17 . . . . . . 7 (𝜑 → (♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) ∈ ℕ0)
4645nn0red 11679 . . . . . 6 (𝜑 → (♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) ∈ ℝ)
47 2rp 12117 . . . . . 6 2 ∈ ℝ+
48 ltaddrp 12151 . . . . . 6 (((♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) ∈ ℝ ∧ 2 ∈ ℝ+) → (♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) < ((♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) + 2))
4946, 47, 48sylancl 582 . . . . 5 (𝜑 → (♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) < ((♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) + 2))
5037nn0red 11679 . . . . . . . . . . 11 (𝜑 → (♯‘𝐴) ∈ ℝ)
5150lem1d 11287 . . . . . . . . . 10 (𝜑 → ((♯‘𝐴) − 1) ≤ (♯‘𝐴))
52 fznn 12702 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → (((♯‘𝐴) − 1) ∈ (1...(♯‘𝐴)) ↔ (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐴) − 1) ≤ (♯‘𝐴))))
5338, 52syl 17 . . . . . . . . . 10 (𝜑 → (((♯‘𝐴) − 1) ∈ (1...(♯‘𝐴)) ↔ (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐴) − 1) ≤ (♯‘𝐴))))
5421, 51, 53mpbir2and 706 . . . . . . . . 9 (𝜑 → ((♯‘𝐴) − 1) ∈ (1...(♯‘𝐴)))
551, 5, 6, 7, 8, 9efgsres 18502 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ (1...(♯‘𝐴))) → (𝐴 ↾ (0..^((♯‘𝐴) − 1))) ∈ dom 𝑆)
564, 54, 55syl2anc 581 . . . . . . . 8 (𝜑 → (𝐴 ↾ (0..^((♯‘𝐴) − 1))) ∈ dom 𝑆)
571, 5, 6, 7, 8, 9efgsval 18495 . . . . . . . 8 ((𝐴 ↾ (0..^((♯‘𝐴) − 1))) ∈ dom 𝑆 → (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘((♯‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) − 1)))
5856, 57syl 17 . . . . . . 7 (𝜑 → (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘((♯‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) − 1)))
59 fz1ssfz0 12730 . . . . . . . . . . . 12 (1...(♯‘𝐴)) ⊆ (0...(♯‘𝐴))
6059, 54sseldi 3825 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴) − 1) ∈ (0...(♯‘𝐴)))
61 swrd0valOLD 13707 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑊 ∧ ((♯‘𝐴) − 1) ∈ (0...(♯‘𝐴))) → (𝐴 substr ⟨0, ((♯‘𝐴) − 1)⟩) = (𝐴 ↾ (0..^((♯‘𝐴) − 1))))
6213, 60, 61syl2anc 581 . . . . . . . . . 10 (𝜑 → (𝐴 substr ⟨0, ((♯‘𝐴) − 1)⟩) = (𝐴 ↾ (0..^((♯‘𝐴) − 1))))
6362fveq2d 6437 . . . . . . . . 9 (𝜑 → (♯‘(𝐴 substr ⟨0, ((♯‘𝐴) − 1)⟩)) = (♯‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))))
64 swrd0lenOLD 13708 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑊 ∧ ((♯‘𝐴) − 1) ∈ (0...(♯‘𝐴))) → (♯‘(𝐴 substr ⟨0, ((♯‘𝐴) − 1)⟩)) = ((♯‘𝐴) − 1))
6513, 60, 64syl2anc 581 . . . . . . . . 9 (𝜑 → (♯‘(𝐴 substr ⟨0, ((♯‘𝐴) − 1)⟩)) = ((♯‘𝐴) − 1))
6663, 65eqtr3d 2863 . . . . . . . 8 (𝜑 → (♯‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = ((♯‘𝐴) − 1))
6766fvoveq1d 6927 . . . . . . 7 (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘((♯‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) − 1)) = ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘(((♯‘𝐴) − 1) − 1)))
68 fzo0end 12855 . . . . . . . 8 (((♯‘𝐴) − 1) ∈ ℕ → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)))
69 fvres 6452 . . . . . . . 8 ((((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘(((♯‘𝐴) − 1) − 1)) = (𝐴‘(((♯‘𝐴) − 1) − 1)))
7021, 68, 693syl 18 . . . . . . 7 (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘(((♯‘𝐴) − 1) − 1)) = (𝐴‘(((♯‘𝐴) − 1) − 1)))
7158, 67, 703eqtrd 2865 . . . . . 6 (𝜑 → (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝐴‘(((♯‘𝐴) − 1) − 1)))
7271fveq2d 6437 . . . . 5 (𝜑 → (♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) = (♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
731, 5, 6, 7, 8, 9efgsdmi 18496 . . . . . . 7 ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ ℕ) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
744, 21, 73syl2anc 581 . . . . . 6 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
751, 5, 6, 7efgtlen 18490 . . . . . 6 (((𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) → (♯‘(𝑆𝐴)) = ((♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) + 2))
7642, 74, 75syl2anc 581 . . . . 5 (𝜑 → (♯‘(𝑆𝐴)) = ((♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) + 2))
7749, 72, 763brtr4d 4905 . . . 4 (𝜑 → (♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) < (♯‘(𝑆𝐴)))
781, 5, 6, 7efgtf 18486 . . . . . . . . . . . 12 ((𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊 → ((𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) = (𝑎 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))), 𝑏 ∈ (𝐼 × 2o) ↦ ((𝐴‘(((♯‘𝐴) − 1) − 1)) splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))):((0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) × (𝐼 × 2o))⟶𝑊))
7942, 78syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) = (𝑎 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))), 𝑏 ∈ (𝐼 × 2o) ↦ ((𝐴‘(((♯‘𝐴) − 1) − 1)) splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))):((0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) × (𝐼 × 2o))⟶𝑊))
8079simprd 491 . . . . . . . . . 10 (𝜑 → (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))):((0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) × (𝐼 × 2o))⟶𝑊)
81 ffn 6278 . . . . . . . . . 10 ((𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))):((0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) × (𝐼 × 2o))⟶𝑊 → (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) Fn ((0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) × (𝐼 × 2o)))
82 ovelrn 7070 . . . . . . . . . 10 ((𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) Fn ((0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) × (𝐼 × 2o)) → ((𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) ↔ ∃𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))))∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟)))
8380, 81, 823syl 18 . . . . . . . . 9 (𝜑 → ((𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) ↔ ∃𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))))∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟)))
8474, 83mpbid 224 . . . . . . . 8 (𝜑 → ∃𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))))∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟))
8520simprd 491 . . . . . . . . . 10 (𝜑 → ((♯‘𝐵) − 1) ∈ ℕ)
861, 5, 6, 7, 8, 9efgsdmi 18496 . . . . . . . . . 10 ((𝐵 ∈ dom 𝑆 ∧ ((♯‘𝐵) − 1) ∈ ℕ) → (𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))))
8717, 85, 86syl2anc 581 . . . . . . . . 9 (𝜑 → (𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))))
881, 5, 6, 7, 8, 9efgsdm 18494 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1)))))
8988simp1bi 1181 . . . . . . . . . . . . . . . 16 (𝐵 ∈ dom 𝑆𝐵 ∈ (Word 𝑊 ∖ {∅}))
9017, 89syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ (Word 𝑊 ∖ {∅}))
9190eldifad 3810 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ Word 𝑊)
92 wrdf 13579 . . . . . . . . . . . . . 14 (𝐵 ∈ Word 𝑊𝐵:(0..^(♯‘𝐵))⟶𝑊)
9391, 92syl 17 . . . . . . . . . . . . 13 (𝜑𝐵:(0..^(♯‘𝐵))⟶𝑊)
94 fzo0end 12855 . . . . . . . . . . . . . . 15 (((♯‘𝐵) − 1) ∈ ℕ → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1)))
95 elfzofz 12780 . . . . . . . . . . . . . . 15 ((((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1)) → (((♯‘𝐵) − 1) − 1) ∈ (0...((♯‘𝐵) − 1)))
9685, 94, 953syl 18 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝐵) − 1) − 1) ∈ (0...((♯‘𝐵) − 1)))
97 lencl 13593 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ Word 𝑊 → (♯‘𝐵) ∈ ℕ0)
9891, 97syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝐵) ∈ ℕ0)
9998nn0zd 11808 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝐵) ∈ ℤ)
100 fzoval 12766 . . . . . . . . . . . . . . 15 ((♯‘𝐵) ∈ ℤ → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1)))
10199, 100syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1)))
10296, 101eleqtrrd 2909 . . . . . . . . . . . . 13 (𝜑 → (((♯‘𝐵) − 1) − 1) ∈ (0..^(♯‘𝐵)))
10393, 102ffvelrnd 6609 . . . . . . . . . . . 12 (𝜑 → (𝐵‘(((♯‘𝐵) − 1) − 1)) ∈ 𝑊)
1041, 5, 6, 7efgtf 18486 . . . . . . . . . . . 12 ((𝐵‘(((♯‘𝐵) − 1) − 1)) ∈ 𝑊 → ((𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) = (𝑎 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))), 𝑏 ∈ (𝐼 × 2o) ↦ ((𝐵‘(((♯‘𝐵) − 1) − 1)) splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))):((0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) × (𝐼 × 2o))⟶𝑊))
105103, 104syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) = (𝑎 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))), 𝑏 ∈ (𝐼 × 2o) ↦ ((𝐵‘(((♯‘𝐵) − 1) − 1)) splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))):((0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) × (𝐼 × 2o))⟶𝑊))
106105simprd 491 . . . . . . . . . 10 (𝜑 → (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))):((0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) × (𝐼 × 2o))⟶𝑊)
107 ffn 6278 . . . . . . . . . 10 ((𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))):((0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) × (𝐼 × 2o))⟶𝑊 → (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) Fn ((0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) × (𝐼 × 2o)))
108 ovelrn 7070 . . . . . . . . . 10 ((𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) Fn ((0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) × (𝐼 × 2o)) → ((𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) ↔ ∃𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1))))∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))
109106, 107, 1083syl 18 . . . . . . . . 9 (𝜑 → ((𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) ↔ ∃𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1))))∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))
11087, 109mpbid 224 . . . . . . . 8 (𝜑 → ∃𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1))))∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠))
111 reeanv 3317 . . . . . . . . 9 (∃𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))))∃𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1))))(∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ ∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)) ↔ (∃𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))))∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ ∃𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1))))∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))
112 reeanv 3317 . . . . . . . . . . 11 (∃𝑟 ∈ (𝐼 × 2o)∃𝑠 ∈ (𝐼 × 2o)((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)) ↔ (∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ ∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))
11316ad3antrrr 723 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
1144ad3antrrr 723 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → 𝐴 ∈ dom 𝑆)
11517ad3antrrr 723 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → 𝐵 ∈ dom 𝑆)
11618ad3antrrr 723 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → (𝑆𝐴) = (𝑆𝐵))
11719ad3antrrr 723 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → ¬ (𝐴‘0) = (𝐵‘0))
118 eqid 2825 . . . . . . . . . . . . . . 15 (((♯‘𝐴) − 1) − 1) = (((♯‘𝐴) − 1) − 1)
119 eqid 2825 . . . . . . . . . . . . . . 15 (((♯‘𝐵) − 1) − 1) = (((♯‘𝐵) − 1) − 1)
120 simpllr 795 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1))))))
121120simpld 490 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → 𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))))
122120simprd 491 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))
123 simplrl 797 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → (𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)))
124123simpld 490 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → 𝑟 ∈ (𝐼 × 2o))
125123simprd 491 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → 𝑠 ∈ (𝐼 × 2o))
126 simplrr 798 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))
127126simpld 490 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → (𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟))
128126simprd 491 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠))
129 simpr 479 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1)))
1301, 5, 6, 7, 8, 9, 113, 114, 115, 116, 117, 118, 119, 121, 122, 124, 125, 127, 128, 129efgredlemb 18511 . . . . . . . . . . . . . 14 ¬ (((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1)))
131 iman 392 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) → (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) ↔ ¬ (((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))))
132130, 131mpbir 223 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) → (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1)))
133132expr 450 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ (𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o))) → (((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)) → (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))))
134133rexlimdvva 3248 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) → (∃𝑟 ∈ (𝐼 × 2o)∃𝑠 ∈ (𝐼 × 2o)((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)) → (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))))
135112, 134syl5bir 235 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) → ((∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ ∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)) → (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))))
136135rexlimdvva 3248 . . . . . . . . 9 (𝜑 → (∃𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))))∃𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1))))(∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ ∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)) → (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))))
137111, 136syl5bir 235 . . . . . . . 8 (𝜑 → ((∃𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))))∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ ∃𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1))))∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)) → (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))))
13884, 110, 137mp2and 692 . . . . . . 7 (𝜑 → (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1)))
139 fvres 6452 . . . . . . . 8 ((((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1)) → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘(((♯‘𝐵) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1)))
14085, 94, 1393syl 18 . . . . . . 7 (𝜑 → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘(((♯‘𝐵) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1)))
141138, 70, 1403eqtr4d 2871 . . . . . 6 (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘(((♯‘𝐴) − 1) − 1)) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘(((♯‘𝐵) − 1) − 1)))
142 fz1ssfz0 12730 . . . . . . . . . . 11 (1...(♯‘𝐵)) ⊆ (0...(♯‘𝐵))
14398nn0red 11679 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐵) ∈ ℝ)
144143lem1d 11287 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐵) − 1) ≤ (♯‘𝐵))
145 fznn 12702 . . . . . . . . . . . . 13 ((♯‘𝐵) ∈ ℤ → (((♯‘𝐵) − 1) ∈ (1...(♯‘𝐵)) ↔ (((♯‘𝐵) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ≤ (♯‘𝐵))))
14699, 145syl 17 . . . . . . . . . . . 12 (𝜑 → (((♯‘𝐵) − 1) ∈ (1...(♯‘𝐵)) ↔ (((♯‘𝐵) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ≤ (♯‘𝐵))))
14785, 144, 146mpbir2and 706 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐵) − 1) ∈ (1...(♯‘𝐵)))
148142, 147sseldi 3825 . . . . . . . . . 10 (𝜑 → ((♯‘𝐵) − 1) ∈ (0...(♯‘𝐵)))
149 swrd0valOLD 13707 . . . . . . . . . 10 ((𝐵 ∈ Word 𝑊 ∧ ((♯‘𝐵) − 1) ∈ (0...(♯‘𝐵))) → (𝐵 substr ⟨0, ((♯‘𝐵) − 1)⟩) = (𝐵 ↾ (0..^((♯‘𝐵) − 1))))
15091, 148, 149syl2anc 581 . . . . . . . . 9 (𝜑 → (𝐵 substr ⟨0, ((♯‘𝐵) − 1)⟩) = (𝐵 ↾ (0..^((♯‘𝐵) − 1))))
151150fveq2d 6437 . . . . . . . 8 (𝜑 → (♯‘(𝐵 substr ⟨0, ((♯‘𝐵) − 1)⟩)) = (♯‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))))
152 swrd0lenOLD 13708 . . . . . . . . 9 ((𝐵 ∈ Word 𝑊 ∧ ((♯‘𝐵) − 1) ∈ (0...(♯‘𝐵))) → (♯‘(𝐵 substr ⟨0, ((♯‘𝐵) − 1)⟩)) = ((♯‘𝐵) − 1))
15391, 148, 152syl2anc 581 . . . . . . . 8 (𝜑 → (♯‘(𝐵 substr ⟨0, ((♯‘𝐵) − 1)⟩)) = ((♯‘𝐵) − 1))
154151, 153eqtr3d 2863 . . . . . . 7 (𝜑 → (♯‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = ((♯‘𝐵) − 1))
155154fvoveq1d 6927 . . . . . 6 (𝜑 → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘((♯‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) − 1)) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘(((♯‘𝐵) − 1) − 1)))
156141, 67, 1553eqtr4d 2871 . . . . 5 (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘((♯‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) − 1)) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘((♯‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) − 1)))
1571, 5, 6, 7, 8, 9efgsres 18502 . . . . . . 7 ((𝐵 ∈ dom 𝑆 ∧ ((♯‘𝐵) − 1) ∈ (1...(♯‘𝐵))) → (𝐵 ↾ (0..^((♯‘𝐵) − 1))) ∈ dom 𝑆)
15817, 147, 157syl2anc 581 . . . . . 6 (𝜑 → (𝐵 ↾ (0..^((♯‘𝐵) − 1))) ∈ dom 𝑆)
1591, 5, 6, 7, 8, 9efgsval 18495 . . . . . 6 ((𝐵 ↾ (0..^((♯‘𝐵) − 1))) ∈ dom 𝑆 → (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘((♯‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) − 1)))
160158, 159syl 17 . . . . 5 (𝜑 → (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘((♯‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) − 1)))
161156, 58, 1603eqtr4d 2871 . . . 4 (𝜑 → (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))))
162 fveq2 6433 . . . . . . . . 9 (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → (𝑆𝑎) = (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))))
163162fveq2d 6437 . . . . . . . 8 (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → (♯‘(𝑆𝑎)) = (♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))))
164163breq1d 4883 . . . . . . 7 (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → ((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) ↔ (♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) < (♯‘(𝑆𝐴))))
165162eqeq1d 2827 . . . . . . . 8 (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → ((𝑆𝑎) = (𝑆𝑏) ↔ (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆𝑏)))
166 fveq1 6432 . . . . . . . . 9 (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → (𝑎‘0) = ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0))
167166eqeq1d 2827 . . . . . . . 8 (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → ((𝑎‘0) = (𝑏‘0) ↔ ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0)))
168165, 167imbi12d 336 . . . . . . 7 (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → (((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)) ↔ ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆𝑏) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0))))
169164, 168imbi12d 336 . . . . . 6 (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → (((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) < (♯‘(𝑆𝐴)) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆𝑏) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0)))))
170 fveq2 6433 . . . . . . . . 9 (𝑏 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → (𝑆𝑏) = (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))))
171170eqeq2d 2835 . . . . . . . 8 (𝑏 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆𝑏) ↔ (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1))))))
172 fveq1 6432 . . . . . . . . 9 (𝑏 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → (𝑏‘0) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0))
173172eqeq2d 2835 . . . . . . . 8 (𝑏 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → (((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0) ↔ ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0)))
174171, 173imbi12d 336 . . . . . . 7 (𝑏 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → (((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆𝑏) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0)) ↔ ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0))))
175174imbi2d 332 . . . . . 6 (𝑏 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → (((♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) < (♯‘(𝑆𝐴)) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆𝑏) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) < (♯‘(𝑆𝐴)) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0)))))
176169, 175rspc2va 3540 . . . . 5 ((((𝐴 ↾ (0..^((♯‘𝐴) − 1))) ∈ dom 𝑆 ∧ (𝐵 ↾ (0..^((♯‘𝐵) − 1))) ∈ dom 𝑆) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))) → ((♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) < (♯‘(𝑆𝐴)) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0))))
17756, 158, 16, 176syl21anc 873 . . . 4 (𝜑 → ((♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) < (♯‘(𝑆𝐴)) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0))))
17877, 161, 177mp2d 49 . . 3 (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0))
179 lbfzo0 12803 . . . . 5 (0 ∈ (0..^((♯‘𝐴) − 1)) ↔ ((♯‘𝐴) − 1) ∈ ℕ)
18021, 179sylibr 226 . . . 4 (𝜑 → 0 ∈ (0..^((♯‘𝐴) − 1)))
181 fvres 6452 . . . 4 (0 ∈ (0..^((♯‘𝐴) − 1)) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝐴‘0))
182180, 181syl 17 . . 3 (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝐴‘0))
183 lbfzo0 12803 . . . . 5 (0 ∈ (0..^((♯‘𝐵) − 1)) ↔ ((♯‘𝐵) − 1) ∈ ℕ)
18485, 183sylibr 226 . . . 4 (𝜑 → 0 ∈ (0..^((♯‘𝐵) − 1)))
185 fvres 6452 . . . 4 (0 ∈ (0..^((♯‘𝐵) − 1)) → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0) = (𝐵‘0))
186184, 185syl 17 . . 3 (𝜑 → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0) = (𝐵‘0))
187178, 182, 1863eqtr3d 2869 . 2 (𝜑 → (𝐴‘0) = (𝐵‘0))
188187, 19pm2.65i 186 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wne 2999  wral 3117  wrex 3118  {crab 3121  cdif 3795  c0 4144  {csn 4397  cop 4403  cotp 4405   ciun 4740   class class class wbr 4873  cmpt 4952   I cid 5249   × cxp 5340  dom cdm 5342  ran crn 5343  cres 5344   Fn wfn 6118  wf 6119  cfv 6123  (class class class)co 6905  cmpt2 6907  1oc1o 7819  2oc2o 7820  Fincfn 8222  cr 10251  0cc0 10252  1c1 10253   + caddc 10255   < clt 10391  cle 10392  cmin 10585  cn 11350  2c2 11406  0cn0 11618  cz 11704  +crp 12112  ...cfz 12619  ..^cfzo 12760  chash 13410  Word cword 13574   substr csubstr 13700   splice csplice 13855  ⟨“cs2 13962   ~FG cefg 18470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-ot 4406  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-concat 13631  df-s1 13656  df-substr 13701  df-pfx 13750  df-splice 13857  df-s2 13969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator