MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2mpt2cl Structured version   Visualization version   GIF version

Theorem el2mpt2cl 7531
Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. Using implicit substitution. (Contributed by AV, 21-May-2021.)
Hypotheses
Ref Expression
el2mpt2cl.o 𝑂 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑠𝐶, 𝑡𝐷𝐸))
el2mpt2cl.e ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐶 = 𝐹𝐷 = 𝐺))
Assertion
Ref Expression
el2mpt2cl (∀𝑥𝐴𝑦𝐵 (𝐶𝑈𝐷𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝐹𝑇𝐺))))
Distinct variable groups:   𝐴,𝑠,𝑡,𝑥,𝑦   𝐵,𝑠,𝑡,𝑥,𝑦   𝐶,𝑠,𝑡   𝐷,𝑠,𝑡   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦   𝑋,𝑠,𝑡,𝑥,𝑦   𝑌,𝑠,𝑡,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦,𝑡,𝑠)   𝑇(𝑥,𝑦,𝑡,𝑠)   𝑈(𝑡,𝑠)   𝐸(𝑥,𝑦,𝑡,𝑠)   𝐹(𝑡,𝑠)   𝐺(𝑡,𝑠)   𝑂(𝑥,𝑦,𝑡,𝑠)   𝑉(𝑡,𝑠)   𝑊(𝑥,𝑦,𝑡,𝑠)

Proof of Theorem el2mpt2cl
StepHypRef Expression
1 el2mpt2cl.o . . 3 𝑂 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑠𝐶, 𝑡𝐷𝐸))
21el2mpt2csbcl 7530 . 2 (∀𝑥𝐴𝑦𝐵 (𝐶𝑈𝐷𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝑋 / 𝑥𝑌 / 𝑦𝐶𝑇𝑋 / 𝑥𝑌 / 𝑦𝐷))))
3 simpl 476 . . . . . . 7 ((𝑋𝐴𝑌𝐵) → 𝑋𝐴)
4 simplr 759 . . . . . . . 8 (((𝑋𝐴𝑌𝐵) ∧ 𝑥 = 𝑋) → 𝑌𝐵)
5 el2mpt2cl.e . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐶 = 𝐹𝐷 = 𝐺))
65simpld 490 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝐶 = 𝐹)
76adantll 704 . . . . . . . 8 ((((𝑋𝐴𝑌𝐵) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝐶 = 𝐹)
84, 7csbied 3778 . . . . . . 7 (((𝑋𝐴𝑌𝐵) ∧ 𝑥 = 𝑋) → 𝑌 / 𝑦𝐶 = 𝐹)
93, 8csbied 3778 . . . . . 6 ((𝑋𝐴𝑌𝐵) → 𝑋 / 𝑥𝑌 / 𝑦𝐶 = 𝐹)
109eleq2d 2845 . . . . 5 ((𝑋𝐴𝑌𝐵) → (𝑆𝑋 / 𝑥𝑌 / 𝑦𝐶𝑆𝐹))
115simprd 491 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝐷 = 𝐺)
1211adantll 704 . . . . . . . 8 ((((𝑋𝐴𝑌𝐵) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺)
134, 12csbied 3778 . . . . . . 7 (((𝑋𝐴𝑌𝐵) ∧ 𝑥 = 𝑋) → 𝑌 / 𝑦𝐷 = 𝐺)
143, 13csbied 3778 . . . . . 6 ((𝑋𝐴𝑌𝐵) → 𝑋 / 𝑥𝑌 / 𝑦𝐷 = 𝐺)
1514eleq2d 2845 . . . . 5 ((𝑋𝐴𝑌𝐵) → (𝑇𝑋 / 𝑥𝑌 / 𝑦𝐷𝑇𝐺))
1610, 15anbi12d 624 . . . 4 ((𝑋𝐴𝑌𝐵) → ((𝑆𝑋 / 𝑥𝑌 / 𝑦𝐶𝑇𝑋 / 𝑥𝑌 / 𝑦𝐷) ↔ (𝑆𝐹𝑇𝐺)))
1716biimpd 221 . . 3 ((𝑋𝐴𝑌𝐵) → ((𝑆𝑋 / 𝑥𝑌 / 𝑦𝐶𝑇𝑋 / 𝑥𝑌 / 𝑦𝐷) → (𝑆𝐹𝑇𝐺)))
1817imdistani 564 . 2 (((𝑋𝐴𝑌𝐵) ∧ (𝑆𝑋 / 𝑥𝑌 / 𝑦𝐶𝑇𝑋 / 𝑥𝑌 / 𝑦𝐷)) → ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝐹𝑇𝐺)))
192, 18syl6 35 1 (∀𝑥𝐴𝑦𝐵 (𝐶𝑈𝐷𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝐹𝑇𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wral 3090  csb 3751  (class class class)co 6922  cmpt2 6924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446
This theorem is referenced by:  wwlksonvtx  27204  wspthnonp  27208
  Copyright terms: Public domain W3C validator