![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvdmOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of elfvdm 6528 as of 22-Oct-2022. (Contributed by NM, 12-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elfvdmOLD | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4180 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → (𝐹‘𝐵) ≠ ∅) | |
2 | ndmfv 6526 | . . 3 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
3 | 2 | necon1ai 2987 | . 2 ⊢ ((𝐹‘𝐵) ≠ ∅ → 𝐵 ∈ dom 𝐹) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2051 ≠ wne 2960 ∅c0 4172 dom cdm 5403 ‘cfv 6185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 ax-nul 5063 ax-pow 5115 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-dm 5413 df-iota 6149 df-fv 6193 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |