MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elresOLD Structured version   Visualization version   GIF version

Theorem elresOLD 5613
Description: Obsolete proof of elres 5612 as of 15-Sep-2022. (Contributed by Scott Fenton, 17-Mar-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elresOLD (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elresOLD
StepHypRef Expression
1 relres 5603 . . . . 5 Rel (𝐵𝐶)
2 elrel 5393 . . . . 5 ((Rel (𝐵𝐶) ∧ 𝐴 ∈ (𝐵𝐶)) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
31, 2mpan 681 . . . 4 (𝐴 ∈ (𝐵𝐶) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
4 eleq1 2832 . . . . . . . . 9 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ (𝐵𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶)))
54biimpd 220 . . . . . . . 8 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ (𝐵𝐶) → ⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶)))
6 vex 3353 . . . . . . . . . . 11 𝑦 ∈ V
76opelresOLD2 5579 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐵𝑥𝐶))
87biimpi 207 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶) → (⟨𝑥, 𝑦⟩ ∈ 𝐵𝑥𝐶))
98ancomd 453 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶) → (𝑥𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
105, 9syl6com 37 . . . . . . 7 (𝐴 ∈ (𝐵𝐶) → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝑥𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
1110ancld 546 . . . . . 6 (𝐴 ∈ (𝐵𝐶) → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))))
12 an12 635 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) ↔ (𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
1311, 12syl6ib 242 . . . . 5 (𝐴 ∈ (𝐵𝐶) → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))))
14132eximdv 2014 . . . 4 (𝐴 ∈ (𝐵𝐶) → (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑦(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))))
153, 14mpd 15 . . 3 (𝐴 ∈ (𝐵𝐶) → ∃𝑥𝑦(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
16 rexcom4 3378 . . . 4 (∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦𝑥𝐶 (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
17 df-rex 3061 . . . . 5 (∃𝑥𝐶 (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑥(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
1817exbii 1943 . . . 4 (∃𝑦𝑥𝐶 (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦𝑥(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
19 excom 2206 . . . 4 (∃𝑦𝑥(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) ↔ ∃𝑥𝑦(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
2016, 18, 193bitri 288 . . 3 (∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑥𝑦(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
2115, 20sylibr 225 . 2 (𝐴 ∈ (𝐵𝐶) → ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
227simplbi2com 496 . . . . . 6 (𝑥𝐶 → (⟨𝑥, 𝑦⟩ ∈ 𝐵 → ⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶)))
234biimprd 239 . . . . . 6 (𝐴 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶) → 𝐴 ∈ (𝐵𝐶)))
2422, 23syl9 77 . . . . 5 (𝑥𝐶 → (𝐴 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ 𝐵𝐴 ∈ (𝐵𝐶))))
2524impd 398 . . . 4 (𝑥𝐶 → ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) → 𝐴 ∈ (𝐵𝐶)))
2625exlimdv 2028 . . 3 (𝑥𝐶 → (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) → 𝐴 ∈ (𝐵𝐶)))
2726rexlimiv 3174 . 2 (∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) → 𝐴 ∈ (𝐵𝐶))
2821, 27impbii 200 1 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  wrex 3056  cop 4342  cres 5281  Rel wrel 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pr 5064
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-sn 4337  df-pr 4339  df-op 4343  df-opab 4874  df-xp 5285  df-rel 5286  df-res 5291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator