![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elridOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of elrid 5695 as of 15-Sep-2022. (Contributed by BJ, 28-Aug-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elridOLD | ⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elres 5672 | . 2 ⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ I )) | |
2 | opeq2 4625 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 〈𝑥, 𝑥〉 = 〈𝑥, 𝑦〉) | |
3 | 2 | eqeq2d 2836 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴 = 〈𝑥, 𝑥〉 ↔ 𝐴 = 〈𝑥, 𝑦〉)) |
4 | 3 | pm5.32ri 573 | . . . . . 6 ⊢ ((𝐴 = 〈𝑥, 𝑥〉 ∧ 𝑥 = 𝑦) ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑥 = 𝑦)) |
5 | df-br 4875 | . . . . . . . 8 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
6 | vex 3418 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
7 | 6 | ideq 5508 | . . . . . . . 8 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
8 | 5, 7 | bitr3i 269 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ I ↔ 𝑥 = 𝑦) |
9 | 8 | anbi2i 618 | . . . . . 6 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑥 = 𝑦)) |
10 | 4, 9 | bitr4i 270 | . . . . 5 ⊢ ((𝐴 = 〈𝑥, 𝑥〉 ∧ 𝑥 = 𝑦) ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ I )) |
11 | 10 | exbii 1949 | . . . 4 ⊢ (∃𝑦(𝐴 = 〈𝑥, 𝑥〉 ∧ 𝑥 = 𝑦) ↔ ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ I )) |
12 | ax6evr 2121 | . . . . 5 ⊢ ∃𝑦 𝑥 = 𝑦 | |
13 | 19.42v 2054 | . . . . 5 ⊢ (∃𝑦(𝐴 = 〈𝑥, 𝑥〉 ∧ 𝑥 = 𝑦) ↔ (𝐴 = 〈𝑥, 𝑥〉 ∧ ∃𝑦 𝑥 = 𝑦)) | |
14 | 12, 13 | mpbiran2 703 | . . . 4 ⊢ (∃𝑦(𝐴 = 〈𝑥, 𝑥〉 ∧ 𝑥 = 𝑦) ↔ 𝐴 = 〈𝑥, 𝑥〉) |
15 | 11, 14 | bitr3i 269 | . . 3 ⊢ (∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ 𝐴 = 〈𝑥, 𝑥〉) |
16 | 15 | rexbii 3252 | . 2 ⊢ (∃𝑥 ∈ 𝑋 ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) |
17 | 1, 16 | bitri 267 | 1 ⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1658 ∃wex 1880 ∈ wcel 2166 ∃wrex 3119 〈cop 4404 class class class wbr 4874 I cid 5250 ↾ cres 5345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pr 5128 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4875 df-opab 4937 df-id 5251 df-xp 5349 df-rel 5350 df-res 5355 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |