![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrnmpt2 | Structured version Visualization version GIF version |
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
elrnmpt2.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elrnmpt2 | ⊢ (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngop.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | rnmpt2 7004 | . . 3 ⊢ ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
3 | 2 | eleq2i 2870 | . 2 ⊢ (𝐷 ∈ ran 𝐹 ↔ 𝐷 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶}) |
4 | elrnmpt2.1 | . . . . . 6 ⊢ 𝐶 ∈ V | |
5 | eleq1 2866 | . . . . . 6 ⊢ (𝐷 = 𝐶 → (𝐷 ∈ V ↔ 𝐶 ∈ V)) | |
6 | 4, 5 | mpbiri 250 | . . . . 5 ⊢ (𝐷 = 𝐶 → 𝐷 ∈ V) |
7 | 6 | rexlimivw 3210 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝐷 = 𝐶 → 𝐷 ∈ V) |
8 | 7 | rexlimivw 3210 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶 → 𝐷 ∈ V) |
9 | eqeq1 2803 | . . . 4 ⊢ (𝑧 = 𝐷 → (𝑧 = 𝐶 ↔ 𝐷 = 𝐶)) | |
10 | 9 | 2rexbidv 3238 | . . 3 ⊢ (𝑧 = 𝐷 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶)) |
11 | 8, 10 | elab3 3550 | . 2 ⊢ (𝐷 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) |
12 | 3, 11 | bitri 267 | 1 ⊢ (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1653 ∈ wcel 2157 {cab 2785 ∃wrex 3090 Vcvv 3385 ran crn 5313 ↦ cmpt2 6880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-cnv 5320 df-dm 5322 df-rn 5323 df-oprab 6882 df-mpt2 6883 |
This theorem is referenced by: qexALT 12048 lsmelvalx 18368 efgtlen 18452 frgpnabllem1 18591 fmucndlem 22423 mbfimaopnlem 23763 tglnunirn 25799 tpr2rico 30474 mbfmco2 30843 br2base 30847 dya2icobrsiga 30854 dya2iocnrect 30859 dya2iocucvr 30862 sxbrsigalem2 30864 cntotbnd 34082 eldiophb 38106 elicores 40504 volicorescl 41513 |
Copyright terms: Public domain | W3C validator |