MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt2g Structured version   Visualization version   GIF version

Theorem elrnmpt2g 7032
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
elrnmpt2g (𝐷𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem elrnmpt2g
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2829 . . 3 (𝑧 = 𝐷 → (𝑧 = 𝐶𝐷 = 𝐶))
212rexbidv 3267 . 2 (𝑧 = 𝐷 → (∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶))
3 rngop.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
43rnmpt2 7030 . 2 ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
52, 4elab2g 3574 1 (𝐷𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1658  wcel 2166  wrex 3118  ran crn 5343  cmpt2 6907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-br 4874  df-opab 4936  df-cnv 5350  df-dm 5352  df-rn 5353  df-oprab 6909  df-mpt2 6910
This theorem is referenced by:  ordtbas2  21366  txopn  21776  tgisline  25939  elsx  30802  smflimlem6  41778
  Copyright terms: Public domain W3C validator