MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwwlks2ons3OLD Structured version   Visualization version   GIF version

Theorem elwwlks2ons3OLD 27096
Description: Obsolete version of elwwlks2ons3 27095 as of 13-Mar-2022. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
wwlks2onv.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwwlks2ons3OLD ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏   𝐺,𝑏   𝑉,𝑏   𝑊,𝑏   𝑈,𝑏

Proof of Theorem elwwlks2ons3OLD
StepHypRef Expression
1 simpr 473 . . . . 5 (((𝐺𝑈𝐴𝑉𝐶𝑉) ∧ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
2 wwlks2onv.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
32wwlknonOLD 26983 . . . . . . . 8 ((𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶)))
433adant1 1153 . . . . . . 7 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶)))
5 wwlknbp2OLD 26967 . . . . . . . . . 10 (𝑊 ∈ (2 WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)))
6 2p1e3 11434 . . . . . . . . . . . 12 (2 + 1) = 3
76eqeq2i 2818 . . . . . . . . . . 11 ((♯‘𝑊) = (2 + 1) ↔ (♯‘𝑊) = 3)
8 1ex 10321 . . . . . . . . . . . . . . . . 17 1 ∈ V
98tpid2 4495 . . . . . . . . . . . . . . . 16 1 ∈ {0, 1, 2}
10 oveq2 6882 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = 3 → (0..^(♯‘𝑊)) = (0..^3))
11 fzo0to3tp 12778 . . . . . . . . . . . . . . . . 17 (0..^3) = {0, 1, 2}
1210, 11syl6eq 2856 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) = 3 → (0..^(♯‘𝑊)) = {0, 1, 2})
139, 12syl5eleqr 2892 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = 3 → 1 ∈ (0..^(♯‘𝑊)))
14 wrdsymbcl 13529 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ∈ (0..^(♯‘𝑊))) → (𝑊‘1) ∈ (Vtx‘𝐺))
1513, 14sylan2 582 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → (𝑊‘1) ∈ (Vtx‘𝐺))
16153ad2ant1 1156 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) → (𝑊‘1) ∈ (Vtx‘𝐺))
17 simpr 473 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → (♯‘𝑊) = 3)
18173ad2ant1 1156 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) → (♯‘𝑊) = 3)
1918adantr 468 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (♯‘𝑊) = 3)
20 simpl 470 . . . . . . . . . . . . . . . . . 18 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘0) = 𝐴)
21 eqidd 2807 . . . . . . . . . . . . . . . . . 18 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘1) = (𝑊‘1))
22 simpr 473 . . . . . . . . . . . . . . . . . 18 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘2) = 𝐶)
2320, 21, 223jca 1151 . . . . . . . . . . . . . . . . 17 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
24233ad2ant2 1157 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
2524adantr 468 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
262eqcomi 2815 . . . . . . . . . . . . . . . . . . . . . 22 (Vtx‘𝐺) = 𝑉
2726wrdeqi 13539 . . . . . . . . . . . . . . . . . . . . 21 Word (Vtx‘𝐺) = Word 𝑉
2827eleq2i 2877 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ Word (Vtx‘𝐺) ↔ 𝑊 ∈ Word 𝑉)
2928biimpi 207 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word 𝑉)
3029adantr 468 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → 𝑊 ∈ Word 𝑉)
31303ad2ant1 1156 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) → 𝑊 ∈ Word 𝑉)
3231adantr 468 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝑊 ∈ Word 𝑉)
33 simpl32 1336 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝐴𝑉)
3426eleq2i 2877 . . . . . . . . . . . . . . . . . 18 ((𝑊‘1) ∈ (Vtx‘𝐺) ↔ (𝑊‘1) ∈ 𝑉)
3534biimpi 207 . . . . . . . . . . . . . . . . 17 ((𝑊‘1) ∈ (Vtx‘𝐺) → (𝑊‘1) ∈ 𝑉)
3635adantl 469 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊‘1) ∈ 𝑉)
37 simpl33 1338 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝐶𝑉)
38 eqwrds3 13929 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉 ∧ (𝑊‘1) ∈ 𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))))
3932, 33, 36, 37, 38syl13anc 1484 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))))
4019, 25, 39mpbir2and 695 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩)
4140, 36jca 503 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
4216, 41mpdan 670 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
43423exp 1141 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
447, 43sylan2b 583 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
455, 44syl 17 . . . . . . . . 9 (𝑊 ∈ (2 WWalksN 𝐺) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
46453impib 1137 . . . . . . . 8 ((𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
4746com12 32 . . . . . . 7 ((𝐺𝑈𝐴𝑉𝐶𝑉) → ((𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
484, 47sylbid 231 . . . . . 6 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
4948imp 395 . . . . 5 (((𝐺𝑈𝐴𝑉𝐶𝑉) ∧ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
50 anass 456 . . . . 5 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) ↔ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
511, 49, 50sylanbrc 574 . . . 4 (((𝐺𝑈𝐴𝑉𝐶𝑉) ∧ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉))
52 simpr 473 . . . . 5 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊‘1) ∈ 𝑉)
53 eqidd 2807 . . . . . . . 8 (𝑏 = (𝑊‘1) → 𝐴 = 𝐴)
54 id 22 . . . . . . . 8 (𝑏 = (𝑊‘1) → 𝑏 = (𝑊‘1))
55 eqidd 2807 . . . . . . . 8 (𝑏 = (𝑊‘1) → 𝐶 = 𝐶)
5653, 54, 55s3eqd 13833 . . . . . . 7 (𝑏 = (𝑊‘1) → ⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩)
57 eqeq2 2817 . . . . . . . 8 (⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩ → (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ↔ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩))
58 eleq1 2873 . . . . . . . 8 (⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩ → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
5957, 58anbi12d 618 . . . . . . 7 (⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩ → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
6056, 59syl 17 . . . . . 6 (𝑏 = (𝑊‘1) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
6160adantl 469 . . . . 5 ((((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) ∧ 𝑏 = (𝑊‘1)) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
62 simpr 473 . . . . . . 7 ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) → 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩)
63 eleq1 2873 . . . . . . . 8 (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
6463biimpac 466 . . . . . . 7 ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) → ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
6562, 64jca 503 . . . . . 6 ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
6665adantr 468 . . . . 5 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
6752, 61, 66rspcedvd 3509 . . . 4 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
6851, 67syl 17 . . 3 (((𝐺𝑈𝐴𝑉𝐶𝑉) ∧ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
6968ex 399 . 2 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
70 eleq1 2873 . . . . . 6 (⟨“𝐴𝑏𝐶”⟩ = 𝑊 → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
7170eqcoms 2814 . . . . 5 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
7271biimpa 464 . . . 4 ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
7372a1i 11 . . 3 ((𝐺𝑈𝐴𝑉𝐶𝑉) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
7473rexlimdvw 3222 . 2 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
7569, 74impbid 203 1 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  wrex 3097  {ctp 4374  cfv 6101  (class class class)co 6874  0cc0 10221  1c1 10222   + caddc 10224  2c2 11356  3c3 11357  ..^cfzo 12689  chash 13337  Word cword 13502  ⟨“cs3 13811  Vtxcvtx 26088   WWalksN cwwlksn 26947   WWalksNOn cwwlksnon 26948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-oadd 7800  df-er 7979  df-map 8094  df-pm 8095  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-card 9048  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-nn 11306  df-2 11364  df-3 11365  df-n0 11560  df-z 11644  df-uz 11905  df-fz 12550  df-fzo 12690  df-hash 13338  df-word 13510  df-concat 13512  df-s1 13513  df-s2 13817  df-s3 13818  df-wwlks 26951  df-wwlksn 26952  df-wwlksnon 26953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator