Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsb3vOLD Structured version   Visualization version   GIF version

Theorem equsb3vOLD 2508
 Description: Obsolete version of equsb3v 2290 as of 19-Jan-2023. (Contributed by Raph Levien and FL, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
equsb3vOLD ([𝑥 / 𝑦]𝑦 = 𝑧𝑥 = 𝑧)
Distinct variable groups:   𝑦,𝑧   𝑥,𝑦

Proof of Theorem equsb3vOLD
StepHypRef Expression
1 nfv 1957 . 2 𝑦 𝑥 = 𝑧
2 equequ1 2071 . 2 (𝑦 = 𝑥 → (𝑦 = 𝑧𝑥 = 𝑧))
31, 2sbie 2483 1 ([𝑥 / 𝑦]𝑦 = 𝑧𝑥 = 𝑧)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 198  [wsb 2011 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-10 2134  ax-12 2162  ax-13 2333 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-ex 1824  df-nf 1828  df-sb 2012 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator