![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equvelvOLD | Structured version Visualization version GIF version |
Description: Obsolete version of equvelv 2132 as of 12-Jul-2022. (Contributed by Wolf Lammen, 10-Apr-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
equvelvOLD | ⊢ (𝑥 = 𝑦 ↔ ∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equtrr 2121 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
2 | 1 | alrimiv 2023 | . 2 ⊢ (𝑥 = 𝑦 → ∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦)) |
3 | equs4v 2102 | . . 3 ⊢ (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) → ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 = 𝑦)) | |
4 | equvinv 2129 | . . 3 ⊢ (𝑥 = 𝑦 ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 = 𝑦)) | |
5 | 3, 4 | sylibr 226 | . 2 ⊢ (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) → 𝑥 = 𝑦) |
6 | 2, 5 | impbii 201 | 1 ⊢ (𝑥 = 𝑦 ↔ ∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∀wal 1651 ∃wex 1875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |