Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqvOLD Structured version   Visualization version   GIF version

Theorem eqvOLD 3358
 Description: Obsolete proof of eqv 3356 as of 10-Aug-2022. (Contributed by NM, 11-Sep-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
eqvOLD (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eqvOLD
StepHypRef Expression
1 nfcv 2907 . 2 𝑥𝐴
21eqvf 3357 1 (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 197  ∀wal 1650   = wceq 1652   ∈ wcel 2155  Vcvv 3350 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743 This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-v 3352 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator