![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelcoels4 | Structured version Visualization version GIF version |
Description: Two ways to express equivalent coelements. (Contributed by Peter Mazsa, 20-Oct-2021.) |
Ref | Expression |
---|---|
eqvrelcoels4 | ⊢ ( EqvRel ∼ 𝐴 ↔ ∀𝑥∀𝑧(([𝑥] ∼ 𝐴 ∩ [𝑧] ∼ 𝐴) ≠ ∅ → ([𝑥]◡(◡ E ↾ 𝐴) ∩ [𝑧]◡(◡ E ↾ 𝐴)) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelcoss4 34904 | . 2 ⊢ ( EqvRel ≀ (◡ E ↾ 𝐴) ↔ ∀𝑥∀𝑧(([𝑥] ≀ (◡ E ↾ 𝐴) ∩ [𝑧] ≀ (◡ E ↾ 𝐴)) ≠ ∅ → ([𝑥]◡(◡ E ↾ 𝐴) ∩ [𝑧]◡(◡ E ↾ 𝐴)) ≠ ∅)) | |
2 | df-coels 34713 | . . 3 ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | |
3 | 2 | eqvreleqi 34888 | . 2 ⊢ ( EqvRel ∼ 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
4 | 2 | eceq2i 34586 | . . . . . 6 ⊢ [𝑥] ∼ 𝐴 = [𝑥] ≀ (◡ E ↾ 𝐴) |
5 | 2 | eceq2i 34586 | . . . . . 6 ⊢ [𝑧] ∼ 𝐴 = [𝑧] ≀ (◡ E ↾ 𝐴) |
6 | 4, 5 | ineq12i 4041 | . . . . 5 ⊢ ([𝑥] ∼ 𝐴 ∩ [𝑧] ∼ 𝐴) = ([𝑥] ≀ (◡ E ↾ 𝐴) ∩ [𝑧] ≀ (◡ E ↾ 𝐴)) |
7 | 6 | neeq1i 3063 | . . . 4 ⊢ (([𝑥] ∼ 𝐴 ∩ [𝑧] ∼ 𝐴) ≠ ∅ ↔ ([𝑥] ≀ (◡ E ↾ 𝐴) ∩ [𝑧] ≀ (◡ E ↾ 𝐴)) ≠ ∅) |
8 | 7 | imbi1i 341 | . . 3 ⊢ ((([𝑥] ∼ 𝐴 ∩ [𝑧] ∼ 𝐴) ≠ ∅ → ([𝑥]◡(◡ E ↾ 𝐴) ∩ [𝑧]◡(◡ E ↾ 𝐴)) ≠ ∅) ↔ (([𝑥] ≀ (◡ E ↾ 𝐴) ∩ [𝑧] ≀ (◡ E ↾ 𝐴)) ≠ ∅ → ([𝑥]◡(◡ E ↾ 𝐴) ∩ [𝑧]◡(◡ E ↾ 𝐴)) ≠ ∅)) |
9 | 8 | 2albii 1919 | . 2 ⊢ (∀𝑥∀𝑧(([𝑥] ∼ 𝐴 ∩ [𝑧] ∼ 𝐴) ≠ ∅ → ([𝑥]◡(◡ E ↾ 𝐴) ∩ [𝑧]◡(◡ E ↾ 𝐴)) ≠ ∅) ↔ ∀𝑥∀𝑧(([𝑥] ≀ (◡ E ↾ 𝐴) ∩ [𝑧] ≀ (◡ E ↾ 𝐴)) ≠ ∅ → ([𝑥]◡(◡ E ↾ 𝐴) ∩ [𝑧]◡(◡ E ↾ 𝐴)) ≠ ∅)) |
10 | 1, 3, 9 | 3bitr4i 295 | 1 ⊢ ( EqvRel ∼ 𝐴 ↔ ∀𝑥∀𝑧(([𝑥] ∼ 𝐴 ∩ [𝑧] ∼ 𝐴) ≠ ∅ → ([𝑥]◡(◡ E ↾ 𝐴) ∩ [𝑧]◡(◡ E ↾ 𝐴)) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1654 ≠ wne 2999 ∩ cin 3797 ∅c0 4146 E cep 5256 ◡ccnv 5345 ↾ cres 5348 [cec 8012 ≀ ccoss 34519 ∼ ccoels 34520 EqvRel weqvrel 34536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-br 4876 df-opab 4938 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-ec 8016 df-coss 34712 df-coels 34713 df-refrel 34805 df-symrel 34833 df-trrel 34863 df-eqvrel 34873 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |