Step | Hyp | Ref
| Expression |
1 | | df-eu 2587 |
. 2
⊢
(∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
2 | | exsb 2327 |
. . 3
⊢
(∃𝑥𝜑 ↔ ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
3 | | df-mo 2551 |
. . 3
⊢
(∃*𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) |
4 | 2, 3 | anbi12i 620 |
. 2
⊢
((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) |
5 | | exdistrv 1998 |
. . . 4
⊢
(∃𝑦∃𝑧(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ↔ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) |
6 | | 19.26 1916 |
. . . . . . . 8
⊢
(∀𝑥((𝑥 = 𝑦 → 𝜑) ∧ (𝜑 → 𝑥 = 𝑧)) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧))) |
7 | | pm3.33 755 |
. . . . . . . . . . 11
⊢ (((𝑥 = 𝑦 → 𝜑) ∧ (𝜑 → 𝑥 = 𝑧)) → (𝑥 = 𝑦 → 𝑥 = 𝑧)) |
8 | 7 | pm4.71i 555 |
. . . . . . . . . 10
⊢ (((𝑥 = 𝑦 → 𝜑) ∧ (𝜑 → 𝑥 = 𝑧)) ↔ (((𝑥 = 𝑦 → 𝜑) ∧ (𝜑 → 𝑥 = 𝑧)) ∧ (𝑥 = 𝑦 → 𝑥 = 𝑧))) |
9 | 8 | albii 1863 |
. . . . . . . . 9
⊢
(∀𝑥((𝑥 = 𝑦 → 𝜑) ∧ (𝜑 → 𝑥 = 𝑧)) ↔ ∀𝑥(((𝑥 = 𝑦 → 𝜑) ∧ (𝜑 → 𝑥 = 𝑧)) ∧ (𝑥 = 𝑦 → 𝑥 = 𝑧))) |
10 | | 19.26 1916 |
. . . . . . . . 9
⊢
(∀𝑥(((𝑥 = 𝑦 → 𝜑) ∧ (𝜑 → 𝑥 = 𝑧)) ∧ (𝑥 = 𝑦 → 𝑥 = 𝑧)) ↔ (∀𝑥((𝑥 = 𝑦 → 𝜑) ∧ (𝜑 → 𝑥 = 𝑧)) ∧ ∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑧))) |
11 | | equvelv 2080 |
. . . . . . . . . . 11
⊢
(∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑧) ↔ 𝑦 = 𝑧) |
12 | 6, 11 | anbi12i 620 |
. . . . . . . . . 10
⊢
((∀𝑥((𝑥 = 𝑦 → 𝜑) ∧ (𝜑 → 𝑥 = 𝑧)) ∧ ∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑧)) ↔ ((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ∧ 𝑦 = 𝑧)) |
13 | | anass 462 |
. . . . . . . . . . 11
⊢
(((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ∧ 𝑦 = 𝑧) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ (∀𝑥(𝜑 → 𝑥 = 𝑧) ∧ 𝑦 = 𝑧))) |
14 | | equequ2 2073 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) |
15 | 14 | bicomd 215 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) |
16 | 15 | imbi2d 332 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → ((𝜑 → 𝑥 = 𝑧) ↔ (𝜑 → 𝑥 = 𝑦))) |
17 | 16 | albidv 1963 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (∀𝑥(𝜑 → 𝑥 = 𝑧) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
18 | 17 | pm5.32ri 571 |
. . . . . . . . . . . 12
⊢
((∀𝑥(𝜑 → 𝑥 = 𝑧) ∧ 𝑦 = 𝑧) ↔ (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ 𝑦 = 𝑧)) |
19 | 18 | anbi2i 616 |
. . . . . . . . . . 11
⊢
((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ (∀𝑥(𝜑 → 𝑥 = 𝑧) ∧ 𝑦 = 𝑧)) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ 𝑦 = 𝑧))) |
20 | 13, 19 | bitri 267 |
. . . . . . . . . 10
⊢
(((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ∧ 𝑦 = 𝑧) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ 𝑦 = 𝑧))) |
21 | | anass 462 |
. . . . . . . . . . 11
⊢
(((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑦)) ∧ 𝑦 = 𝑧) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ 𝑦 = 𝑧))) |
22 | | 19.26 1916 |
. . . . . . . . . . . . 13
⊢
(∀𝑥((𝑥 = 𝑦 → 𝜑) ∧ (𝜑 → 𝑥 = 𝑦)) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
23 | | ancom 454 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 = 𝑦 → 𝜑) ∧ (𝜑 → 𝑥 = 𝑦)) ↔ ((𝜑 → 𝑥 = 𝑦) ∧ (𝑥 = 𝑦 → 𝜑))) |
24 | | dfbi2 468 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ↔ 𝑥 = 𝑦) ↔ ((𝜑 → 𝑥 = 𝑦) ∧ (𝑥 = 𝑦 → 𝜑))) |
25 | 24 | bicomi 216 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 → 𝑥 = 𝑦) ∧ (𝑥 = 𝑦 → 𝜑)) ↔ (𝜑 ↔ 𝑥 = 𝑦)) |
26 | 23, 25 | bitri 267 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 = 𝑦 → 𝜑) ∧ (𝜑 → 𝑥 = 𝑦)) ↔ (𝜑 ↔ 𝑥 = 𝑦)) |
27 | 26 | albii 1863 |
. . . . . . . . . . . . 13
⊢
(∀𝑥((𝑥 = 𝑦 → 𝜑) ∧ (𝜑 → 𝑥 = 𝑦)) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
28 | 22, 27 | bitr3i 269 |
. . . . . . . . . . . 12
⊢
((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑦)) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
29 | 28 | anbi1i 617 |
. . . . . . . . . . 11
⊢
(((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑦)) ∧ 𝑦 = 𝑧) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝑦 = 𝑧)) |
30 | 21, 29 | bitr3i 269 |
. . . . . . . . . 10
⊢
((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ 𝑦 = 𝑧)) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝑦 = 𝑧)) |
31 | 12, 20, 30 | 3bitri 289 |
. . . . . . . . 9
⊢
((∀𝑥((𝑥 = 𝑦 → 𝜑) ∧ (𝜑 → 𝑥 = 𝑧)) ∧ ∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑧)) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝑦 = 𝑧)) |
32 | 9, 10, 31 | 3bitri 289 |
. . . . . . . 8
⊢
(∀𝑥((𝑥 = 𝑦 → 𝜑) ∧ (𝜑 → 𝑥 = 𝑧)) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝑦 = 𝑧)) |
33 | 6, 32 | bitr3i 269 |
. . . . . . 7
⊢
((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝑦 = 𝑧)) |
34 | 33 | exbii 1892 |
. . . . . 6
⊢
(∃𝑧(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝑦 = 𝑧)) |
35 | | 19.42v 1996 |
. . . . . 6
⊢
(∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝑦 = 𝑧) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧 𝑦 = 𝑧)) |
36 | 34, 35 | bitri 267 |
. . . . 5
⊢
(∃𝑧(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧 𝑦 = 𝑧)) |
37 | 36 | exbii 1892 |
. . . 4
⊢
(∃𝑦∃𝑧(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧 𝑦 = 𝑧)) |
38 | 5, 37 | bitr3i 269 |
. . 3
⊢
((∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧 𝑦 = 𝑧)) |
39 | | ax6evr 2062 |
. . . . . 6
⊢
∃𝑧 𝑦 = 𝑧 |
40 | 39 | biantru 525 |
. . . . 5
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧 𝑦 = 𝑧)) |
41 | 40 | bicomi 216 |
. . . 4
⊢
((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧 𝑦 = 𝑧) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
42 | 41 | exbii 1892 |
. . 3
⊢
(∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧 𝑦 = 𝑧) ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
43 | 38, 42 | bitri 267 |
. 2
⊢
((∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
44 | 1, 4, 43 | 3bitri 289 |
1
⊢
(∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |