Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  euanvOLD Structured version   Visualization version   GIF version

Theorem euanvOLD 2714
 Description: Obsolete version of euanv 2713 as of 14-Jan-2023. (Contributed by NM, 23-Mar-1995.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
euanvOLD (∃!𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem euanvOLD
StepHypRef Expression
1 nfv 2013 . 2 𝑥𝜑
21euan 2709 1 (∃!𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 198   ∧ wa 386  ∃!weu 2639 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-12 2220 This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1879  df-nf 1883  df-mo 2605  df-eu 2640 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator