![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > euexALTOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of euex 2596 as of 31-Dec-2022. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
euexALTOLD | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1873 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | eu1 2641 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
3 | exsimpl 1831 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) → ∃𝑥𝜑) | |
4 | 2, 3 | sylbi 209 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∀wal 1505 ∃wex 1742 [wsb 2015 ∃!weu 2583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-10 2079 ax-11 2093 ax-12 2106 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |