![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eunexOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of eunex 5137 as of 2-Jan-2023. (Contributed by NM, 24-Oct-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
eunexOLD | ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dtru 5118 | . . . . 5 ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | alim 1773 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (∀𝑥𝜑 → ∀𝑥 𝑥 = 𝑦)) | |
3 | 1, 2 | mtoi 191 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → ¬ ∀𝑥𝜑) |
4 | 3 | exlimiv 1889 | . . 3 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ¬ ∀𝑥𝜑) |
5 | 4 | adantl 474 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) → ¬ ∀𝑥𝜑) |
6 | eu3v 2581 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | |
7 | exnal 1789 | . 2 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | |
8 | 5, 6, 7 | 3imtr4i 284 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 ∀wal 1505 ∃wex 1742 ∃!weu 2579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-12 2104 ax-nul 5061 ax-pow 5113 |
This theorem depends on definitions: df-bi 199 df-an 388 df-tru 1510 df-ex 1743 df-nf 1747 df-mo 2544 df-eu 2580 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |