Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  exanOLD Structured version   Visualization version   GIF version

Theorem exanOLD 1859
 Description: Obsolete proof of exan 1858 as of 19-Jun-2023. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) Reduce axiom dependencies. (Revised by BJ, 7-Jul-2021.) (Proof shortened by Wolf Lammen, 6-Nov-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
exanOLD.1 (∃𝑥𝜑𝜓)
Assertion
Ref Expression
exanOLD 𝑥(𝜑𝜓)

Proof of Theorem exanOLD
StepHypRef Expression
1 exanOLD.1 . . 3 (∃𝑥𝜑𝜓)
21simpli 486 . 2 𝑥𝜑
31simpri 488 . . 3 𝜓
43jctr 527 . 2 (𝜑 → (𝜑𝜓))
52, 4eximii 1833 1 𝑥(𝜑𝜓)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 398  ∃wex 1776 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806 This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1777 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator