![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exists2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of exists2 2693 as of 4-Mar-2023. (Contributed by NM, 10-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
exists2OLD | ⊢ ((∃𝑥𝜑 ∧ ∃𝑥 ¬ 𝜑) → ¬ ∃!𝑥 𝑥 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2609 | . . . . . 6 ⊢ Ⅎ𝑥∃!𝑥 𝑥 = 𝑥 | |
2 | nfa1 2145 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
3 | exists1 2692 | . . . . . . 7 ⊢ (∃!𝑥 𝑥 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) | |
4 | axc16 2234 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | |
5 | 3, 4 | sylbi 209 | . . . . . 6 ⊢ (∃!𝑥 𝑥 = 𝑥 → (𝜑 → ∀𝑥𝜑)) |
6 | 1, 2, 5 | exlimd 2204 | . . . . 5 ⊢ (∃!𝑥 𝑥 = 𝑥 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
7 | 6 | com12 32 | . . . 4 ⊢ (∃𝑥𝜑 → (∃!𝑥 𝑥 = 𝑥 → ∀𝑥𝜑)) |
8 | alex 1869 | . . . 4 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
9 | 7, 8 | syl6ib 243 | . . 3 ⊢ (∃𝑥𝜑 → (∃!𝑥 𝑥 = 𝑥 → ¬ ∃𝑥 ¬ 𝜑)) |
10 | 9 | con2d 132 | . 2 ⊢ (∃𝑥𝜑 → (∃𝑥 ¬ 𝜑 → ¬ ∃!𝑥 𝑥 = 𝑥)) |
11 | 10 | imp 397 | 1 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥 ¬ 𝜑) → ¬ ∃!𝑥 𝑥 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∀wal 1599 ∃wex 1823 ∃!weu 2586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-10 2135 ax-11 2150 ax-12 2163 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-mo 2551 df-eu 2587 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |