MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exmoOLD Structured version   Visualization version   GIF version

Theorem exmoOLD 2620
Description: Obsolete proof of exmo 2551 as of 31-Dec-2022. (Contributed by NM, 8-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
exmoOLD (∃𝑥𝜑 ∨ ∃*𝑥𝜑)

Proof of Theorem exmoOLD
StepHypRef Expression
1 pm2.21 121 . . 3 (¬ ∃𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑))
2 moeu 2603 . . 3 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
31, 2sylibr 226 . 2 (¬ ∃𝑥𝜑 → ∃*𝑥𝜑)
43orri 849 1 (∃𝑥𝜑 ∨ ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 834  wex 1743  ∃*wmo 2546  ∃!weu 2584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-ex 1744  df-mo 2548  df-eu 2585
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator