![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exmoOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of exmo 2551 as of 31-Dec-2022. (Contributed by NM, 8-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
exmoOLD | ⊢ (∃𝑥𝜑 ∨ ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 121 | . . 3 ⊢ (¬ ∃𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
2 | moeu 2603 | . . 3 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
3 | 1, 2 | sylibr 226 | . 2 ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) |
4 | 3 | orri 849 | 1 ⊢ (∃𝑥𝜑 ∨ ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 834 ∃wex 1743 ∃*wmo 2546 ∃!weu 2584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-ex 1744 df-mo 2548 df-eu 2585 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |