![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exsbOLD | Structured version Visualization version GIF version |
Description: Obsolete version of exsb 2384 as of 16-Oct-2022. (Contributed by NM, 2-Feb-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
exsbOLD | ⊢ (∃𝑥𝜑 ↔ ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 2015 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfa1 2204 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
3 | ax12v 2223 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
4 | sp 2226 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
5 | 4 | com12 32 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜑)) |
6 | 3, 5 | impbid 204 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
7 | 1, 2, 6 | cbvex 2425 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1656 ∃wex 1880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-ex 1881 df-nf 1885 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |