Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  extwwlkfabelOLD Structured version   Visualization version   GIF version

Theorem extwwlkfabelOLD 27739
 Description: Obsolete version of extwwlkfabel 27738 as of 12-Oct-2022. (Contributed by AV, 22-Feb-2022.) (Revised by AV, 5-Mar-2022.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
Assertion
Ref Expression
extwwlkfabelOLD ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝑤,𝑊
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)   𝑊(𝑣,𝑛)

Proof of Theorem extwwlkfabelOLD
StepHypRef Expression
1 extwwlkfab.v . . . 4 𝑉 = (Vtx‘𝐺)
2 extwwlkfab.c . . . 4 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
3 extwwlkfab.f . . . 4 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
41, 2, 3extwwlkfabOLD 27737 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
54eleq2d 2892 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ 𝑊 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)}))
6 oveq1 6917 . . . . 5 (𝑤 = 𝑊 → (𝑤 substr ⟨0, (𝑁 − 2)⟩) = (𝑊 substr ⟨0, (𝑁 − 2)⟩))
76eleq1d 2891 . . . 4 (𝑤 = 𝑊 → ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ 𝐹 ↔ (𝑊 substr ⟨0, (𝑁 − 2)⟩) ∈ 𝐹))
8 fveq1 6436 . . . . 5 (𝑤 = 𝑊 → (𝑤‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1)))
98eleq1d 2891 . . . 4 (𝑤 = 𝑊 → ((𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ↔ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋)))
10 fveq1 6436 . . . . 5 (𝑤 = 𝑊 → (𝑤‘(𝑁 − 2)) = (𝑊‘(𝑁 − 2)))
1110eqeq1d 2827 . . . 4 (𝑤 = 𝑊 → ((𝑤‘(𝑁 − 2)) = 𝑋 ↔ (𝑊‘(𝑁 − 2)) = 𝑋))
127, 9, 113anbi123d 1564 . . 3 (𝑤 = 𝑊 → (((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
1312elrab 3585 . 2 (𝑊 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
145, 13syl6bb 279 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1111   = wceq 1656   ∈ wcel 2164  {crab 3121  ⟨cop 4405  ‘cfv 6127  (class class class)co 6910   ↦ cmpt2 6912  0cc0 10259  1c1 10260   − cmin 10592  2c2 11413  3c3 11414  ℤ≥cuz 11975   substr csubstr 13707  Vtxcvtx 26301  USGraphcusgr 26455   NeighbVtx cnbgr 26636   ClWWalksN cclwwlkn 27369  ClWWalksNOncclwwlknon 27458 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-map 8129  df-pm 8130  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-xnn0 11698  df-z 11712  df-uz 11976  df-fz 12627  df-fzo 12768  df-hash 13418  df-word 13582  df-lsw 13630  df-substr 13708  df-edg 26353  df-upgr 26387  df-umgr 26388  df-usgr 26457  df-nbgr 26637  df-wwlks 27136  df-wwlksn 27137  df-clwwlk 27318  df-clwwlkn 27370  df-clwwlknon 27459 This theorem is referenced by:  numclwwlk1lem2foaOLD  27741  numclwwlk1lem2fOLD  27747
 Copyright terms: Public domain W3C validator