![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fco3 | Structured version Visualization version GIF version |
Description: Functionality of a composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fco3.1 | ⊢ (𝜑 → Fun 𝐹) |
fco3.2 | ⊢ (𝜑 → Fun 𝐺) |
Ref | Expression |
---|---|
fco3 | ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fco3.1 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) | |
2 | fco3.2 | . . . . 5 ⊢ (𝜑 → Fun 𝐺) | |
3 | funco 6257 | . . . . 5 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → Fun (𝐹 ∘ 𝐺)) |
5 | fdmrn 6398 | . . . 4 ⊢ (Fun (𝐹 ∘ 𝐺) ↔ (𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟶ran (𝐹 ∘ 𝐺)) | |
6 | 4, 5 | sylib 219 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟶ran (𝐹 ∘ 𝐺)) |
7 | dmco 5974 | . . . 4 ⊢ dom (𝐹 ∘ 𝐺) = (◡𝐺 “ dom 𝐹) | |
8 | 7 | feq2i 6366 | . . 3 ⊢ ((𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟶ran (𝐹 ∘ 𝐺) ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran (𝐹 ∘ 𝐺)) |
9 | 6, 8 | sylib 219 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran (𝐹 ∘ 𝐺)) |
10 | rncoss 5716 | . . 3 ⊢ ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹 | |
11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹) |
12 | 9, 11 | fssd 6388 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3854 ◡ccnv 5434 dom cdm 5435 ran crn 5436 “ cima 5438 ∘ ccom 5439 Fun wfun 6211 ⟶wf 6213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pr 5214 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-op 4473 df-br 4957 df-opab 5019 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-fun 6219 df-fn 6220 df-f 6221 |
This theorem is referenced by: smfco 42573 |
Copyright terms: Public domain | W3C validator |