Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fco3 Structured version   Visualization version   GIF version

Theorem fco3 40984
Description: Functionality of a composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fco3.1 (𝜑 → Fun 𝐹)
fco3.2 (𝜑 → Fun 𝐺)
Assertion
Ref Expression
fco3 (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)

Proof of Theorem fco3
StepHypRef Expression
1 fco3.1 . . . . 5 (𝜑 → Fun 𝐹)
2 fco3.2 . . . . 5 (𝜑 → Fun 𝐺)
3 funco 6257 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
41, 2, 3syl2anc 584 . . . 4 (𝜑 → Fun (𝐹𝐺))
5 fdmrn 6398 . . . 4 (Fun (𝐹𝐺) ↔ (𝐹𝐺):dom (𝐹𝐺)⟶ran (𝐹𝐺))
64, 5sylib 219 . . 3 (𝜑 → (𝐹𝐺):dom (𝐹𝐺)⟶ran (𝐹𝐺))
7 dmco 5974 . . . 4 dom (𝐹𝐺) = (𝐺 “ dom 𝐹)
87feq2i 6366 . . 3 ((𝐹𝐺):dom (𝐹𝐺)⟶ran (𝐹𝐺) ↔ (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran (𝐹𝐺))
96, 8sylib 219 . 2 (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran (𝐹𝐺))
10 rncoss 5716 . . 3 ran (𝐹𝐺) ⊆ ran 𝐹
1110a1i 11 . 2 (𝜑 → ran (𝐹𝐺) ⊆ ran 𝐹)
129, 11fssd 6388 1 (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3854  ccnv 5434  dom cdm 5435  ran crn 5436  cima 5438  ccom 5439  Fun wfun 6211  wf 6213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pr 5214
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-sn 4467  df-pr 4469  df-op 4473  df-br 4957  df-opab 5019  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-fun 6219  df-fn 6220  df-f 6221
This theorem is referenced by:  smfco  42573
  Copyright terms: Public domain W3C validator