Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fesapoOLD Structured version   Visualization version   GIF version

Theorem fesapoOLD 2725
 Description: Obsolete proof of fesapo 2724 as of 27-Sep-2022. (Contributed by David A. Wheeler, 27-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
fesapo.maj 𝑥(𝜑 → ¬ 𝜓)
fesapo.min 𝑥(𝜓𝜒)
fesapo.e 𝑥𝜓
Assertion
Ref Expression
fesapoOLD 𝑥(𝜒 ∧ ¬ 𝜑)

Proof of Theorem fesapoOLD
StepHypRef Expression
1 fesapo.e . 2 𝑥𝜓
2 fesapo.min . . . 4 𝑥(𝜓𝜒)
32spi 2216 . . 3 (𝜓𝜒)
4 fesapo.maj . . . . 5 𝑥(𝜑 → ¬ 𝜓)
54spi 2216 . . . 4 (𝜑 → ¬ 𝜓)
65con2i 136 . . 3 (𝜓 → ¬ 𝜑)
73, 6jca 507 . 2 (𝜓 → (𝜒 ∧ ¬ 𝜑))
81, 7eximii 1931 1 𝑥(𝜒 ∧ ¬ 𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384  ∀wal 1650  ∃wex 1874 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-12 2211 This theorem depends on definitions:  df-bi 198  df-an 385  df-ex 1875 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator