Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmpt2x Structured version   Visualization version   GIF version

Theorem fmpt2x 7389
 Description: Functionality, domain and codomain of a class given by the "maps to" notation, where 𝐵(𝑥) is not constant but depends on 𝑥. (Contributed by NM, 29-Dec-2014.)
Hypothesis
Ref Expression
fmpt2x.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
fmpt2x (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fmpt2x
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3354 . . . . . . . 8 𝑧 ∈ V
2 vex 3354 . . . . . . . 8 𝑤 ∈ V
31, 2op1std 7328 . . . . . . 7 (𝑣 = ⟨𝑧, 𝑤⟩ → (1st𝑣) = 𝑧)
43csbeq1d 3689 . . . . . 6 (𝑣 = ⟨𝑧, 𝑤⟩ → (1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶 = 𝑧 / 𝑥(2nd𝑣) / 𝑦𝐶)
51, 2op2ndd 7329 . . . . . . . 8 (𝑣 = ⟨𝑧, 𝑤⟩ → (2nd𝑣) = 𝑤)
65csbeq1d 3689 . . . . . . 7 (𝑣 = ⟨𝑧, 𝑤⟩ → (2nd𝑣) / 𝑦𝐶 = 𝑤 / 𝑦𝐶)
76csbeq2dv 4137 . . . . . 6 (𝑣 = ⟨𝑧, 𝑤⟩ → 𝑧 / 𝑥(2nd𝑣) / 𝑦𝐶 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
84, 7eqtrd 2805 . . . . 5 (𝑣 = ⟨𝑧, 𝑤⟩ → (1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
98eleq1d 2835 . . . 4 (𝑣 = ⟨𝑧, 𝑤⟩ → ((1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶𝐷𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷))
109raliunxp 5399 . . 3 (∀𝑣 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)(1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶𝐷 ↔ ∀𝑧𝐴𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷)
11 nfv 1995 . . . . . . 7 𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)
12 nfv 1995 . . . . . . 7 𝑤((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)
13 nfv 1995 . . . . . . . . 9 𝑥 𝑧𝐴
14 nfcsb1v 3698 . . . . . . . . . 10 𝑥𝑧 / 𝑥𝐵
1514nfcri 2907 . . . . . . . . 9 𝑥 𝑤𝑧 / 𝑥𝐵
1613, 15nfan 1980 . . . . . . . 8 𝑥(𝑧𝐴𝑤𝑧 / 𝑥𝐵)
17 nfcsb1v 3698 . . . . . . . . 9 𝑥𝑧 / 𝑥𝑤 / 𝑦𝐶
1817nfeq2 2929 . . . . . . . 8 𝑥 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶
1916, 18nfan 1980 . . . . . . 7 𝑥((𝑧𝐴𝑤𝑧 / 𝑥𝐵) ∧ 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
20 nfv 1995 . . . . . . . 8 𝑦(𝑧𝐴𝑤𝑧 / 𝑥𝐵)
21 nfcv 2913 . . . . . . . . . 10 𝑦𝑧
22 nfcsb1v 3698 . . . . . . . . . 10 𝑦𝑤 / 𝑦𝐶
2321, 22nfcsb 3700 . . . . . . . . 9 𝑦𝑧 / 𝑥𝑤 / 𝑦𝐶
2423nfeq2 2929 . . . . . . . 8 𝑦 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶
2520, 24nfan 1980 . . . . . . 7 𝑦((𝑧𝐴𝑤𝑧 / 𝑥𝐵) ∧ 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
26 eleq1w 2833 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2726adantr 466 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐴𝑧𝐴))
28 eleq1w 2833 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
29 csbeq1a 3691 . . . . . . . . . . 11 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
3029eleq2d 2836 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑤𝐵𝑤𝑧 / 𝑥𝐵))
3128, 30sylan9bbr 500 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑦𝐵𝑤𝑧 / 𝑥𝐵))
3227, 31anbi12d 616 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐴𝑦𝐵) ↔ (𝑧𝐴𝑤𝑧 / 𝑥𝐵)))
33 csbeq1a 3691 . . . . . . . . . 10 (𝑦 = 𝑤𝐶 = 𝑤 / 𝑦𝐶)
34 csbeq1a 3691 . . . . . . . . . 10 (𝑥 = 𝑧𝑤 / 𝑦𝐶 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
3533, 34sylan9eqr 2827 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
3635eqeq2d 2781 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑣 = 𝐶𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶))
3732, 36anbi12d 616 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑤) → (((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶) ↔ ((𝑧𝐴𝑤𝑧 / 𝑥𝐵) ∧ 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)))
3811, 12, 19, 25, 37cbvoprab12 6879 . . . . . 6 {⟨⟨𝑥, 𝑦⟩, 𝑣⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)} = {⟨⟨𝑧, 𝑤⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑤𝑧 / 𝑥𝐵) ∧ 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)}
39 df-mpt2 6800 . . . . . 6 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑣⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)}
40 df-mpt2 6800 . . . . . 6 (𝑧𝐴, 𝑤𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶) = {⟨⟨𝑧, 𝑤⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑤𝑧 / 𝑥𝐵) ∧ 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)}
4138, 39, 403eqtr4i 2803 . . . . 5 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶)
42 fmpt2x.1 . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
438mpt2mptx 6901 . . . . 5 (𝑣 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵) ↦ (1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶) = (𝑧𝐴, 𝑤𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶)
4441, 42, 433eqtr4i 2803 . . . 4 𝐹 = (𝑣 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵) ↦ (1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶)
4544fmpt 6525 . . 3 (∀𝑣 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)(1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶𝐷𝐹: 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)⟶𝐷)
4610, 45bitr3i 266 . 2 (∀𝑧𝐴𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷𝐹: 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)⟶𝐷)
47 nfv 1995 . . 3 𝑧𝑦𝐵 𝐶𝐷
4817nfel1 2928 . . . 4 𝑥𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷
4914, 48nfral 3094 . . 3 𝑥𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷
50 nfv 1995 . . . . 5 𝑤 𝐶𝐷
5122nfel1 2928 . . . . 5 𝑦𝑤 / 𝑦𝐶𝐷
5233eleq1d 2835 . . . . 5 (𝑦 = 𝑤 → (𝐶𝐷𝑤 / 𝑦𝐶𝐷))
5350, 51, 52cbvral 3316 . . . 4 (∀𝑦𝐵 𝐶𝐷 ↔ ∀𝑤𝐵 𝑤 / 𝑦𝐶𝐷)
5434eleq1d 2835 . . . . 5 (𝑥 = 𝑧 → (𝑤 / 𝑦𝐶𝐷𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷))
5529, 54raleqbidv 3301 . . . 4 (𝑥 = 𝑧 → (∀𝑤𝐵 𝑤 / 𝑦𝐶𝐷 ↔ ∀𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷))
5653, 55syl5bb 272 . . 3 (𝑥 = 𝑧 → (∀𝑦𝐵 𝐶𝐷 ↔ ∀𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷))
5747, 49, 56cbvral 3316 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 ↔ ∀𝑧𝐴𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷)
58 nfcv 2913 . . . 4 𝑧({𝑥} × 𝐵)
59 nfcv 2913 . . . . 5 𝑥{𝑧}
6059, 14nfxp 5282 . . . 4 𝑥({𝑧} × 𝑧 / 𝑥𝐵)
61 sneq 4327 . . . . 5 (𝑥 = 𝑧 → {𝑥} = {𝑧})
6261, 29xpeq12d 5280 . . . 4 (𝑥 = 𝑧 → ({𝑥} × 𝐵) = ({𝑧} × 𝑧 / 𝑥𝐵))
6358, 60, 62cbviun 4692 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)
6463feq2i 6176 . 2 (𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷𝐹: 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)⟶𝐷)
6546, 57, 643bitr4i 292 1 (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ∀wral 3061  ⦋csb 3682  {csn 4317  ⟨cop 4323  ∪ ciun 4655   ↦ cmpt 4864   × cxp 5248  ⟶wf 6026  ‘cfv 6030  {coprab 6796   ↦ cmpt2 6797  1st c1st 7316  2nd c2nd 7317 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-fv 6038  df-oprab 6799  df-mpt2 6800  df-1st 7318  df-2nd 7319 This theorem is referenced by:  fmpt2  7390  eldmcoa  16921  gsum2d2lem  18578  gsum2d2  18579  gsumcom2  18580  dmdprd  18604  dprdval  18609  dprd2d2  18650  ablfaclem2  18692  ptbasfi  21604  ptcmplem1  22075  prdsxmslem2  22553  tglnfn  25662
 Copyright terms: Public domain W3C validator