MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrusgrfrcond Structured version   Visualization version   GIF version

Theorem frgrusgrfrcond 27809
Description: A friendship graph is a simple graph which fulfils the friendship condition. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
Hypotheses
Ref Expression
isfrgr.v 𝑉 = (Vtx‘𝐺)
isfrgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrusgrfrcond (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
Distinct variable groups:   𝑘,𝑙,𝑥,𝐺   𝑘,𝑉,𝑙,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑘,𝑙)

Proof of Theorem frgrusgrfrcond
StepHypRef Expression
1 isfrgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 isfrgr.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2isfrgr 27808 . . . 4 (𝐺 ∈ FriendGraph → (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)))
4 simpl 475 . . . 4 ((𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸) → 𝐺 ∈ USGraph)
53, 4syl6bi 245 . . 3 (𝐺 ∈ FriendGraph → (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph))
65pm2.43i 52 . 2 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
71, 2isfrgr 27808 . 2 (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)))
86, 4, 7pm5.21nii 371 1 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387   = wceq 1508  wcel 2051  wral 3083  ∃!wreu 3085  cdif 3821  wss 3824  {csn 4436  {cpr 4438  cfv 6186  Vtxcvtx 26500  Edgcedg 26551  USGraphcusgr 26653   FriendGraph cfrgr 27806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2745  ax-nul 5064
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ral 3088  df-rex 3089  df-reu 3090  df-rab 3092  df-v 3412  df-sbc 3677  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-sn 4437  df-pr 4439  df-op 4443  df-uni 4710  df-br 4927  df-iota 6150  df-fv 6194  df-frgr 27807
This theorem is referenced by:  frgrusgr  27810  frgr0v  27811  frgr0  27814  frcond1  27816  frgr1v  27821  nfrgr2v  27822  frgr3v  27825  2pthfrgrrn  27832  n4cyclfrgr  27841
  Copyright terms: Public domain W3C validator