![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrusgrfrcond | Structured version Visualization version GIF version |
Description: A friendship graph is a simple graph which fulfils the friendship condition. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
Ref | Expression |
---|---|
isfrgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isfrgr.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
frgrusgrfrcond | ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfrgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | isfrgr.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | isfrgr 27808 | . . . 4 ⊢ (𝐺 ∈ FriendGraph → (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))) |
4 | simpl 475 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸) → 𝐺 ∈ USGraph) | |
5 | 3, 4 | syl6bi 245 | . . 3 ⊢ (𝐺 ∈ FriendGraph → (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)) |
6 | 5 | pm2.43i 52 | . 2 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) |
7 | 1, 2 | isfrgr 27808 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))) |
8 | 6, 4, 7 | pm5.21nii 371 | 1 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∀wral 3083 ∃!wreu 3085 ∖ cdif 3821 ⊆ wss 3824 {csn 4436 {cpr 4438 ‘cfv 6186 Vtxcvtx 26500 Edgcedg 26551 USGraphcusgr 26653 FriendGraph cfrgr 27806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2745 ax-nul 5064 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ral 3088 df-rex 3089 df-reu 3090 df-rab 3092 df-v 3412 df-sbc 3677 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-br 4927 df-iota 6150 df-fv 6194 df-frgr 27807 |
This theorem is referenced by: frgrusgr 27810 frgr0v 27811 frgr0 27814 frcond1 27816 frgr1v 27821 nfrgr2v 27822 frgr3v 27825 2pthfrgrrn 27832 n4cyclfrgr 27841 |
Copyright terms: Public domain | W3C validator |