![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frrlem5d | Structured version Visualization version GIF version |
Description: Lemma for founded recursion. The domain of the union of a subset of 𝐵 is a subset of 𝐴. (Contributed by Paul Chapman, 29-Apr-2012.) |
Ref | Expression |
---|---|
frrlem5.1 | ⊢ 𝑅 Fr 𝐴 |
frrlem5.2 | ⊢ 𝑅 Se 𝐴 |
frrlem5.3 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
Ref | Expression |
---|---|
frrlem5d | ⊢ (𝐶 ⊆ 𝐵 → dom ∪ 𝐶 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmuni 5567 | . 2 ⊢ dom ∪ 𝐶 = ∪ 𝑔 ∈ 𝐶 dom 𝑔 | |
2 | ssel 3822 | . . . . 5 ⊢ (𝐶 ⊆ 𝐵 → (𝑔 ∈ 𝐶 → 𝑔 ∈ 𝐵)) | |
3 | frrlem5.3 | . . . . . 6 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
4 | 3 | frrlem3 32322 | . . . . 5 ⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) |
5 | 2, 4 | syl6 35 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝑔 ∈ 𝐶 → dom 𝑔 ⊆ 𝐴)) |
6 | 5 | ralrimiv 3175 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → ∀𝑔 ∈ 𝐶 dom 𝑔 ⊆ 𝐴) |
7 | iunss 4782 | . . 3 ⊢ (∪ 𝑔 ∈ 𝐶 dom 𝑔 ⊆ 𝐴 ↔ ∀𝑔 ∈ 𝐶 dom 𝑔 ⊆ 𝐴) | |
8 | 6, 7 | sylibr 226 | . 2 ⊢ (𝐶 ⊆ 𝐵 → ∪ 𝑔 ∈ 𝐶 dom 𝑔 ⊆ 𝐴) |
9 | 1, 8 | syl5eqss 3875 | 1 ⊢ (𝐶 ⊆ 𝐵 → dom ∪ 𝐶 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∃wex 1880 ∈ wcel 2166 {cab 2812 ∀wral 3118 ⊆ wss 3799 ∪ cuni 4659 ∪ ciun 4741 Fr wfr 5299 Se wse 5300 dom cdm 5343 ↾ cres 5345 Predcpred 5920 Fn wfn 6119 ‘cfv 6124 (class class class)co 6906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-iota 6087 df-fun 6126 df-fn 6127 df-fv 6132 df-ov 6909 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |