Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem5d Structured version   Visualization version   GIF version

Theorem frrlem5d 32327
Description: Lemma for founded recursion. The domain of the union of a subset of 𝐵 is a subset of 𝐴. (Contributed by Paul Chapman, 29-Apr-2012.)
Hypotheses
Ref Expression
frrlem5.1 𝑅 Fr 𝐴
frrlem5.2 𝑅 Se 𝐴
frrlem5.3 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
Assertion
Ref Expression
frrlem5d (𝐶𝐵 → dom 𝐶𝐴)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑦,𝑓)   𝐶(𝑥,𝑦,𝑓)

Proof of Theorem frrlem5d
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dmuni 5567 . 2 dom 𝐶 = 𝑔𝐶 dom 𝑔
2 ssel 3822 . . . . 5 (𝐶𝐵 → (𝑔𝐶𝑔𝐵))
3 frrlem5.3 . . . . . 6 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
43frrlem3 32322 . . . . 5 (𝑔𝐵 → dom 𝑔𝐴)
52, 4syl6 35 . . . 4 (𝐶𝐵 → (𝑔𝐶 → dom 𝑔𝐴))
65ralrimiv 3175 . . 3 (𝐶𝐵 → ∀𝑔𝐶 dom 𝑔𝐴)
7 iunss 4782 . . 3 ( 𝑔𝐶 dom 𝑔𝐴 ↔ ∀𝑔𝐶 dom 𝑔𝐴)
86, 7sylibr 226 . 2 (𝐶𝐵 𝑔𝐶 dom 𝑔𝐴)
91, 8syl5eqss 3875 1 (𝐶𝐵 → dom 𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wex 1880  wcel 2166  {cab 2812  wral 3118  wss 3799   cuni 4659   ciun 4741   Fr wfr 5299   Se wse 5300  dom cdm 5343  cres 5345  Predcpred 5920   Fn wfn 6119  cfv 6124  (class class class)co 6906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ral 3123  df-rex 3124  df-rab 3127  df-v 3417  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-iota 6087  df-fun 6126  df-fn 6127  df-fv 6132  df-ov 6909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator