![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funressnvmoOLD | Structured version Visualization version GIF version |
Description: Old proof of funressnvmo 42101. Obsolete as of 9-Oct-2022. (Contributed by AV, 2-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funressnvmoOLD | ⊢ (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun6 6150 | . 2 ⊢ (Fun (𝐹 ↾ {𝑥}) ↔ (Rel (𝐹 ↾ {𝑥}) ∧ ∀𝑧∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦)) | |
2 | breq1 4889 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥(𝐹 ↾ {𝑥})𝑦 ↔ 𝑧(𝐹 ↾ {𝑥})𝑦)) | |
3 | 2 | equcoms 2066 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑥(𝐹 ↾ {𝑥})𝑦 ↔ 𝑧(𝐹 ↾ {𝑥})𝑦)) |
4 | 3 | biimpd 221 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑥(𝐹 ↾ {𝑥})𝑦 → 𝑧(𝐹 ↾ {𝑥})𝑦)) |
5 | 4 | moimdv 2558 | . . . 4 ⊢ (𝑧 = 𝑥 → (∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝑥})𝑦)) |
6 | 5 | spimvw 2045 | . . 3 ⊢ (∀𝑧∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝑥})𝑦) |
7 | id 22 | . . . . 5 ⊢ (𝑥𝐹𝑦 → 𝑥𝐹𝑦) | |
8 | vsnid 4430 | . . . . 5 ⊢ 𝑥 ∈ {𝑥} | |
9 | vex 3400 | . . . . . 6 ⊢ 𝑦 ∈ V | |
10 | 9 | brresOLD2 5655 | . . . . 5 ⊢ (𝑥(𝐹 ↾ {𝑥})𝑦 ↔ (𝑥𝐹𝑦 ∧ 𝑥 ∈ {𝑥})) |
11 | 7, 8, 10 | sylanblrc 584 | . . . 4 ⊢ (𝑥𝐹𝑦 → 𝑥(𝐹 ↾ {𝑥})𝑦) |
12 | 11 | moimi 2556 | . . 3 ⊢ (∃*𝑦 𝑥(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥𝐹𝑦) |
13 | 6, 12 | syl 17 | . 2 ⊢ (∀𝑧∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥𝐹𝑦) |
14 | 1, 13 | simplbiim 500 | 1 ⊢ (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1599 ∈ wcel 2106 ∃*wmo 2548 {csn 4397 class class class wbr 4886 ↾ cres 5357 Rel wrel 5360 Fun wfun 6129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4887 df-opab 4949 df-id 5261 df-xp 5361 df-cnv 5363 df-co 5364 df-res 5367 df-fun 6137 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |