![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funsneqopsnOLD | Structured version Visualization version GIF version |
Description: Obsolete as of 15-Jul-2022. Use snopeqopsnid 5165 instead. (Contributed by AV, 24-Sep-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
funsndifnop.a | ⊢ 𝐴 ∈ V |
funsndifnop.b | ⊢ 𝐵 ∈ V |
funsndifnop.g | ⊢ 𝐺 = {〈𝐴, 𝐵〉} |
Ref | Expression |
---|---|
funsneqopsnOLD | ⊢ (𝐴 = 𝐵 → 𝐺 = 〈{𝐴}, {𝐴}〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4594 | . . . 4 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐴〉 = 〈𝐴, 𝐵〉) | |
2 | 1 | sneqd 4380 | . . 3 ⊢ (𝐴 = 𝐵 → {〈𝐴, 𝐴〉} = {〈𝐴, 𝐵〉}) |
3 | funsndifnop.g | . . 3 ⊢ 𝐺 = {〈𝐴, 𝐵〉} | |
4 | 2, 3 | syl6reqr 2852 | . 2 ⊢ (𝐴 = 𝐵 → 𝐺 = {〈𝐴, 𝐴〉}) |
5 | eqid 2799 | . . . 4 ⊢ 𝐴 = 𝐴 | |
6 | eqid 2799 | . . . 4 ⊢ {𝐴} = {𝐴} | |
7 | 5, 6, 6 | 3pm3.2i 1439 | . . 3 ⊢ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴}) |
8 | eqeq1 2803 | . . . 4 ⊢ (𝐺 = {〈𝐴, 𝐴〉} → (𝐺 = 〈{𝐴}, {𝐴}〉 ↔ {〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉)) | |
9 | funsndifnop.a | . . . . 5 ⊢ 𝐴 ∈ V | |
10 | snex 5099 | . . . . 5 ⊢ {𝐴} ∈ V | |
11 | 9, 9, 10, 10 | snopeqopOLD 5162 | . . . 4 ⊢ ({〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉 ↔ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴})) |
12 | 8, 11 | syl6bb 279 | . . 3 ⊢ (𝐺 = {〈𝐴, 𝐴〉} → (𝐺 = 〈{𝐴}, {𝐴}〉 ↔ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴}))) |
13 | 7, 12 | mpbiri 250 | . 2 ⊢ (𝐺 = {〈𝐴, 𝐴〉} → 𝐺 = 〈{𝐴}, {𝐴}〉) |
14 | 4, 13 | syl 17 | 1 ⊢ (𝐴 = 𝐵 → 𝐺 = 〈{𝐴}, {𝐴}〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 Vcvv 3385 {csn 4368 〈cop 4374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 |
This theorem is referenced by: funsneqopOLD 6646 |
Copyright terms: Public domain | W3C validator |