![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gchcda1 | Structured version Visualization version GIF version |
Description: An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
gchcda1 | ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 +𝑐 1𝑜) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 7959 | . . . . . 6 ⊢ 1𝑜 ∈ ω | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (¬ 𝐴 ∈ Fin → 1𝑜 ∈ ω) |
3 | cdadom3 9298 | . . . . 5 ⊢ ((𝐴 ∈ GCH ∧ 1𝑜 ∈ ω) → 𝐴 ≼ (𝐴 +𝑐 1𝑜)) | |
4 | 2, 3 | sylan2 587 | . . . 4 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 +𝑐 1𝑜)) |
5 | simpr 478 | . . . . . 6 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin) | |
6 | nnfi 8395 | . . . . . . . . 9 ⊢ (1𝑜 ∈ ω → 1𝑜 ∈ Fin) | |
7 | 1, 6 | mp1i 13 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ Fin → 1𝑜 ∈ Fin) |
8 | fidomtri2 9106 | . . . . . . . 8 ⊢ ((𝐴 ∈ GCH ∧ 1𝑜 ∈ Fin) → (𝐴 ≼ 1𝑜 ↔ ¬ 1𝑜 ≺ 𝐴)) | |
9 | 7, 8 | sylan2 587 | . . . . . . 7 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1𝑜 ↔ ¬ 1𝑜 ≺ 𝐴)) |
10 | 1, 6 | mp1i 13 | . . . . . . . 8 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1𝑜 ∈ Fin) |
11 | domfi 8423 | . . . . . . . . 9 ⊢ ((1𝑜 ∈ Fin ∧ 𝐴 ≼ 1𝑜) → 𝐴 ∈ Fin) | |
12 | 11 | ex 402 | . . . . . . . 8 ⊢ (1𝑜 ∈ Fin → (𝐴 ≼ 1𝑜 → 𝐴 ∈ Fin)) |
13 | 10, 12 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1𝑜 → 𝐴 ∈ Fin)) |
14 | 9, 13 | sylbird 252 | . . . . . 6 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (¬ 1𝑜 ≺ 𝐴 → 𝐴 ∈ Fin)) |
15 | 5, 14 | mt3d 143 | . . . . 5 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1𝑜 ≺ 𝐴) |
16 | canthp1 9764 | . . . . 5 ⊢ (1𝑜 ≺ 𝐴 → (𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴) |
18 | 4, 17 | jca 508 | . . 3 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴 +𝑐 1𝑜) ∧ (𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴)) |
19 | gchen1 9735 | . . 3 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 +𝑐 1𝑜) ∧ (𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴 +𝑐 1𝑜)) | |
20 | 18, 19 | mpdan 679 | . 2 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 +𝑐 1𝑜)) |
21 | 20 | ensymd 8246 | 1 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 +𝑐 1𝑜) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∈ wcel 2157 𝒫 cpw 4349 class class class wbr 4843 (class class class)co 6878 ωcom 7299 1𝑜c1o 7792 ≈ cen 8192 ≼ cdom 8193 ≺ csdm 8194 Fincfn 8195 +𝑐 ccda 9277 GCHcgch 9730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-map 8097 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-oi 8657 df-card 9051 df-cda 9278 df-gch 9731 |
This theorem is referenced by: gchinf 9767 gchcdaidm 9778 gchpwdom 9780 |
Copyright terms: Public domain | W3C validator |