Step | Hyp | Ref
| Expression |
1 | | cnfldbas 21152 |
. . . 4
⊢ ℂ =
(Base‘ℂfld) |
2 | 1 | a1i 11 |
. . 3
⊢ (⊤
→ ℂ = (Base‘ℂfld)) |
3 | | cnfldadd 21153 |
. . . 4
⊢ + =
(+g‘ℂfld) |
4 | 3 | a1i 11 |
. . 3
⊢ (⊤
→ + = (+g‘ℂfld)) |
5 | | mpocnfldmul 35490 |
. . . 4
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) =
(.r‘ℂfld) |
6 | 5 | a1i 11 |
. . 3
⊢ (⊤
→ (𝑢 ∈ ℂ,
𝑣 ∈ ℂ ↦
(𝑢 · 𝑣)) =
(.r‘ℂfld)) |
7 | | addcl 11198 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
8 | | addass 11203 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
9 | | 0cn 11213 |
. . . . 5
⊢ 0 ∈
ℂ |
10 | | addlid 11404 |
. . . . 5
⊢ (𝑥 ∈ ℂ → (0 +
𝑥) = 𝑥) |
11 | | negcl 11467 |
. . . . 5
⊢ (𝑥 ∈ ℂ → -𝑥 ∈
ℂ) |
12 | | addcom 11407 |
. . . . . . 7
⊢ ((-𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
13 | 11, 12 | mpancom 685 |
. . . . . 6
⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
14 | | negid 11514 |
. . . . . 6
⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) |
15 | 13, 14 | eqtrd 2771 |
. . . . 5
⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0) |
16 | 1, 3, 7, 8, 9, 10,
11, 15 | isgrpi 18884 |
. . . 4
⊢
ℂfld ∈ Grp |
17 | 16 | a1i 11 |
. . 3
⊢ (⊤
→ ℂfld ∈ Grp) |
18 | | mpomulf 11210 |
. . . . 5
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)):(ℂ ×
ℂ)⟶ℂ |
19 | 18 | fovcl 7540 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ ℂ) |
20 | 19 | 3adant1 1129 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ℂ ∧ 𝑦
∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ ℂ) |
21 | | mulass 11204 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
22 | | simp1 1135 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑥 ∈
ℂ) |
23 | | simp2 1136 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑦 ∈
ℂ) |
24 | 22, 23 | mulcld 11241 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
25 | | simp3 1137 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈
ℂ) |
26 | 24, 25 | jca 511 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ)) |
27 | | ovmpot 7572 |
. . . . . . . . 9
⊢ (((𝑥 · 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥 · 𝑦) · 𝑧)) |
28 | 26, 27 | syl 17 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥 · 𝑦) · 𝑧)) |
29 | 23, 25 | mulcld 11241 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 · 𝑧) ∈ ℂ) |
30 | 22, 29 | jca 511 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 ∈ ℂ ∧ (𝑦 · 𝑧) ∈ ℂ)) |
31 | | ovmpot 7572 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 · 𝑧) ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 · 𝑧)) = (𝑥 · (𝑦 · 𝑧))) |
32 | 30, 31 | syl 17 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 · 𝑧)) = (𝑥 · (𝑦 · 𝑧))) |
33 | 28, 32 | eqeq12d 2747 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (((𝑥 · 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 · 𝑧)) ↔ ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))) |
34 | 33 | bicomd 222 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)) ↔ ((𝑥 · 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 · 𝑧)))) |
35 | 21, 34 | mpbid 231 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 · 𝑧))) |
36 | | 3simpa 1147 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 ∈ ℂ ∧ 𝑦 ∈
ℂ)) |
37 | | ovmpot 7572 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦)) |
38 | 36, 37 | syl 17 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦)) |
39 | 38 | oveq1d 7427 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥 · 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)) |
40 | 39 | eqcomd 2737 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)) |
41 | | 3simpc 1149 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 ∈ ℂ ∧ 𝑧 ∈
ℂ)) |
42 | | ovmpot 7572 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑦 · 𝑧)) |
43 | 41, 42 | syl 17 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑦 · 𝑧)) |
44 | 43 | oveq2d 7428 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 · 𝑧))) |
45 | 44 | eqcomd 2737 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 · 𝑧)) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) |
46 | 40, 45 | eqeq12d 2747 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (((𝑥 · 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 · 𝑧)) ↔ ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)))) |
47 | 35, 46 | mpbid 231 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) |
48 | 47 | adantl 481 |
. . 3
⊢
((⊤ ∧ (𝑥
∈ ℂ ∧ 𝑦
∈ ℂ ∧ 𝑧
∈ ℂ)) → ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) |
49 | | adddi 11205 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
50 | 23, 25 | addcld 11240 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 + 𝑧) ∈ ℂ) |
51 | 22, 50 | jca 511 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 ∈ ℂ ∧ (𝑦 + 𝑧) ∈ ℂ)) |
52 | | ovmpot 7572 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 + 𝑧) ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 + 𝑧)) = (𝑥 · (𝑦 + 𝑧))) |
53 | 51, 52 | syl 17 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 + 𝑧)) = (𝑥 · (𝑦 + 𝑧))) |
54 | 53 | eqcomd 2737 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 + 𝑧))) |
55 | | 3simpb 1148 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 ∈ ℂ ∧ 𝑧 ∈
ℂ)) |
56 | | ovmpot 7572 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥 · 𝑧)) |
57 | 55, 56 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥 · 𝑧)) |
58 | 38, 57 | oveq12d 7430 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) + (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
59 | 58 | eqcomd 2737 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) + (𝑥 · 𝑧)) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) + (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) |
60 | 54, 59 | eqeq12d 2747 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ↔ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 + 𝑧)) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) + (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)))) |
61 | 60 | biimpd 228 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 + 𝑧)) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) + (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)))) |
62 | 49, 61 | mpd 15 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 + 𝑧)) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) + (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) |
63 | 62 | adantl 481 |
. . 3
⊢
((⊤ ∧ (𝑥
∈ ℂ ∧ 𝑦
∈ ℂ ∧ 𝑧
∈ ℂ)) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 + 𝑧)) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) + (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) |
64 | | adddir 11212 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
65 | 22, 23 | addcld 11240 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
66 | 65, 25 | jca 511 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ)) |
67 | | ovmpot 7572 |
. . . . . . . . 9
⊢ (((𝑥 + 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥 + 𝑦) · 𝑧)) |
68 | 66, 67 | syl 17 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥 + 𝑦) · 𝑧)) |
69 | 68 | eqcomd 2737 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 + 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)) |
70 | 57, 43 | oveq12d 7430 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) + (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
71 | 70 | eqcomd 2737 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑧) + (𝑦 · 𝑧)) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) + (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) |
72 | 69, 71 | eqeq12d 2747 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)) ↔ ((𝑥 + 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) + (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)))) |
73 | 72 | biimpd 228 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)) → ((𝑥 + 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) + (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)))) |
74 | 64, 73 | mpd 15 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) + (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) |
75 | 74 | adantl 481 |
. . 3
⊢
((⊤ ∧ (𝑥
∈ ℂ ∧ 𝑦
∈ ℂ ∧ 𝑧
∈ ℂ)) → ((𝑥
+ 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) + (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) |
76 | | 1cnd 11216 |
. . 3
⊢ (⊤
→ 1 ∈ ℂ) |
77 | | mullid 11220 |
. . . . 5
⊢ (𝑥 ∈ ℂ → (1
· 𝑥) = 𝑥) |
78 | | 1cnd 11216 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ → 1 ∈
ℂ) |
79 | 78 | ancri 549 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → (1 ∈
ℂ ∧ 𝑥 ∈
ℂ)) |
80 | | ovmpot 7572 |
. . . . . . . . 9
⊢ ((1
∈ ℂ ∧ 𝑥
∈ ℂ) → (1(𝑢
∈ ℂ, 𝑣 ∈
ℂ ↦ (𝑢 ·
𝑣))𝑥) = (1 · 𝑥)) |
81 | 79, 80 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (1 · 𝑥)) |
82 | 81 | eqcomd 2737 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ → (1
· 𝑥) = (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥)) |
83 | 82 | eqeq1d 2733 |
. . . . . 6
⊢ (𝑥 ∈ ℂ → ((1
· 𝑥) = 𝑥 ↔ (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥)) |
84 | 83 | biimpd 228 |
. . . . 5
⊢ (𝑥 ∈ ℂ → ((1
· 𝑥) = 𝑥 → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥)) |
85 | 77, 84 | mpd 15 |
. . . 4
⊢ (𝑥 ∈ ℂ → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥) |
86 | 85 | adantl 481 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (1(𝑢
∈ ℂ, 𝑣 ∈
ℂ ↦ (𝑢 ·
𝑣))𝑥) = 𝑥) |
87 | | mulrid 11219 |
. . . . 5
⊢ (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥) |
88 | 78 | ancli 548 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → (𝑥 ∈ ℂ ∧ 1 ∈
ℂ)) |
89 | | ovmpot 7572 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = (𝑥 · 1)) |
90 | 88, 89 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = (𝑥 · 1)) |
91 | 90 | eqcomd 2737 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ → (𝑥 · 1) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1)) |
92 | 91 | eqeq1d 2733 |
. . . . . 6
⊢ (𝑥 ∈ ℂ → ((𝑥 · 1) = 𝑥 ↔ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)) |
93 | 92 | biimpd 228 |
. . . . 5
⊢ (𝑥 ∈ ℂ → ((𝑥 · 1) = 𝑥 → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)) |
94 | 87, 93 | mpd 15 |
. . . 4
⊢ (𝑥 ∈ ℂ → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥) |
95 | 94 | adantl 481 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥) |
96 | | mulcom 11202 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
97 | 37 | eqcomd 2737 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)) |
98 | | pm3.22 459 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 ∈ ℂ ∧ 𝑥 ∈
ℂ)) |
99 | | ovmpot 7572 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥)) |
100 | 98, 99 | syl 17 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥)) |
101 | 100 | eqcomd 2737 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝑥) = (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥)) |
102 | 97, 101 | eqeq12d 2747 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 · 𝑦) = (𝑦 · 𝑥) ↔ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥))) |
103 | 102 | biimpd 228 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 · 𝑦) = (𝑦 · 𝑥) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥))) |
104 | 96, 103 | mpd 15 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥)) |
105 | 104 | 3adant1 1129 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ℂ ∧ 𝑦
∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥)) |
106 | 2, 4, 6, 17, 20, 48, 63, 75, 76, 86, 95, 105 | iscrngd 20184 |
. 2
⊢ (⊤
→ ℂfld ∈ CRing) |
107 | 106 | mptru 1547 |
1
⊢
ℂfld ∈ CRing |