MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbaevg Structured version   Visualization version   GIF version

Theorem hbaevg 2034
Description: Generalization of hbaev 2035, proved at no extra cost. Instance of aev2 2039. (Contributed by Wolf Lammen, 22-Mar-2021.) (Revised by BJ, 29-Mar-2021.)
Assertion
Ref Expression
hbaevg (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑡 𝑡 = 𝑢)
Distinct variable groups:   𝑥,𝑦   𝑢,𝑡

Proof of Theorem hbaevg
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aevlem 2031 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑣 𝑣 = 𝑤)
2 aevlem 2031 . . 3 (∀𝑣 𝑣 = 𝑤 → ∀𝑡 𝑡 = 𝑢)
32alrimiv 1905 . 2 (∀𝑣 𝑣 = 𝑤 → ∀𝑧𝑡 𝑡 = 𝑢)
41, 3syl 17 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑡 𝑡 = 𝑢)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992
This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1762
This theorem is referenced by:  hbaev  2035  aev2  2039
  Copyright terms: Public domain W3C validator