![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ichnfimlem1 | Structured version Visualization version GIF version |
Description: Lemma for ichnfimlem3 43127: A substitution of a non-free variable has no effect. Give the distinctor in a form that can be easily eliminiated. (Contributed by Wolf Lammen, 6-Aug-2023.) |
Ref | Expression |
---|---|
ichnfimlem1 | ⊢ ((∀𝑦Ⅎ𝑥𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naev 2040 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑏) | |
2 | nfsb4t 2495 | . . . 4 ⊢ (∀𝑦Ⅎ𝑥𝜑 → (¬ ∀𝑥 𝑥 = 𝑏 → Ⅎ𝑥[𝑏 / 𝑦]𝜑)) | |
3 | 1, 2 | syl5 34 | . . 3 ⊢ (∀𝑦Ⅎ𝑥𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑏 / 𝑦]𝜑)) |
4 | 3 | imp 407 | . 2 ⊢ ((∀𝑦Ⅎ𝑥𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥[𝑏 / 𝑦]𝜑) |
5 | sbft 2235 | . 2 ⊢ (Ⅎ𝑥[𝑏 / 𝑦]𝜑 → ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) | |
6 | 4, 5 | syl 17 | 1 ⊢ ((∀𝑦Ⅎ𝑥𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∀wal 1523 Ⅎwnf 1769 [wsb 2044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 |
This theorem is referenced by: ichnfimlem3 43127 |
Copyright terms: Public domain | W3C validator |