Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  idrefOLD Structured version   Visualization version   GIF version

Theorem idrefOLD 5692
 Description: Obsolete version of idref 6603 and idrefALT 5691 as of 27-Aug-2022. (Contributed by FL, 15-Jan-2012.) (Revised by NM, 30-Mar-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
idrefOLD (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem idrefOLD
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ral 3060 . 2 (∀𝑥𝐴 𝑥𝑅𝑥 ↔ ∀𝑥(𝑥𝐴𝑥𝑅𝑥))
2 vex 3353 . . . . 5 𝑥 ∈ V
3 opelidres 5584 . . . . 5 (𝑥 ∈ V → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) ↔ 𝑥𝐴))
42, 3ax-mp 5 . . . 4 (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) ↔ 𝑥𝐴)
5 df-br 4810 . . . . 5 (𝑥𝑅𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅)
65bicomi 215 . . . 4 (⟨𝑥, 𝑥⟩ ∈ 𝑅𝑥𝑅𝑥)
74, 6imbi12i 341 . . 3 ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) ↔ (𝑥𝐴𝑥𝑅𝑥))
87albii 1914 . 2 (∀𝑥(⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) ↔ ∀𝑥(𝑥𝐴𝑥𝑅𝑥))
9 ralidm 4234 . . . . . 6 (∀𝑥 ∈ V ∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) ↔ ∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅))
10 ralv 3372 . . . . . 6 (∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) ↔ ∀𝑥(⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅))
119, 10bitri 266 . . . . 5 (∀𝑥 ∈ V ∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) ↔ ∀𝑥(⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅))
12 df-ral 3060 . . . . . . . . 9 (∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) ↔ ∀𝑥(𝑥 ∈ V → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅)))
13 pm2.27 42 . . . . . . . . . . . 12 (𝑥 ∈ V → ((𝑥 ∈ V → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅)) → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅)))
14 opelresgOLD2 5575 . . . . . . . . . . . . . . 15 (𝑧 ∈ V → (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) ↔ (⟨𝑥, 𝑧⟩ ∈ I ∧ 𝑥𝐴)))
15 df-br 4810 . . . . . . . . . . . . . . . . 17 (𝑥 I 𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ I )
16 vex 3353 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ V
1716ideq 5443 . . . . . . . . . . . . . . . . . 18 (𝑥 I 𝑧𝑥 = 𝑧)
18 opelidres 5584 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐴 → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) ↔ 𝑥𝐴))
19 pm2.27 42 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ⟨𝑥, 𝑥⟩ ∈ 𝑅))
20 opeq2 4560 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑧⟩)
2120eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (⟨𝑥, 𝑥⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝑅))
2221biimpcd 240 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑥, 𝑥⟩ ∈ 𝑅 → (𝑥 = 𝑧 → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
2319, 22syl6 35 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → (𝑥 = 𝑧 → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
2418, 23syl6bir 245 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴 → (𝑥𝐴 → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → (𝑥 = 𝑧 → ⟨𝑥, 𝑧⟩ ∈ 𝑅))))
2524pm2.43i 52 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → (𝑥 = 𝑧 → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
2625com3r 87 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝑥𝐴 → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
2717, 26sylbi 208 . . . . . . . . . . . . . . . . 17 (𝑥 I 𝑧 → (𝑥𝐴 → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
2815, 27sylbir 226 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑧⟩ ∈ I → (𝑥𝐴 → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
2928imp 395 . . . . . . . . . . . . . . 15 ((⟨𝑥, 𝑧⟩ ∈ I ∧ 𝑥𝐴) → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
3014, 29syl6bi 244 . . . . . . . . . . . . . 14 (𝑧 ∈ V → (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
3130com3r 87 . . . . . . . . . . . . 13 ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → (𝑧 ∈ V → (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
3231ralrimiv 3112 . . . . . . . . . . . 12 ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ∀𝑧 ∈ V (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
3313, 32syl6 35 . . . . . . . . . . 11 (𝑥 ∈ V → ((𝑥 ∈ V → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅)) → ∀𝑧 ∈ V (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
342, 33ax-mp 5 . . . . . . . . . 10 ((𝑥 ∈ V → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅)) → ∀𝑧 ∈ V (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
3534sps 2217 . . . . . . . . 9 (∀𝑥(𝑥 ∈ V → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅)) → ∀𝑧 ∈ V (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
3612, 35sylbi 208 . . . . . . . 8 (∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ∀𝑧 ∈ V (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
3736ralimi 3099 . . . . . . 7 (∀𝑥 ∈ V ∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ∀𝑥 ∈ V ∀𝑧 ∈ V (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
38 eleq1 2832 . . . . . . . . 9 (𝑦 = ⟨𝑥, 𝑧⟩ → (𝑦 ∈ ( I ↾ 𝐴) ↔ ⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴)))
39 eleq1 2832 . . . . . . . . 9 (𝑦 = ⟨𝑥, 𝑧⟩ → (𝑦𝑅 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝑅))
4038, 39imbi12d 335 . . . . . . . 8 (𝑦 = ⟨𝑥, 𝑧⟩ → ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅) ↔ (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
4140ralxp 5432 . . . . . . 7 (∀𝑦 ∈ (V × V)(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅) ↔ ∀𝑥 ∈ V ∀𝑧 ∈ V (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
4237, 41sylibr 225 . . . . . 6 (∀𝑥 ∈ V ∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ∀𝑦 ∈ (V × V)(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅))
43 df-ral 3060 . . . . . . 7 (∀𝑦 ∈ (V × V)(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅) ↔ ∀𝑦(𝑦 ∈ (V × V) → (𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅)))
44 relres 5601 . . . . . . . . . . . 12 Rel ( I ↾ 𝐴)
45 df-rel 5284 . . . . . . . . . . . 12 (Rel ( I ↾ 𝐴) ↔ ( I ↾ 𝐴) ⊆ (V × V))
4644, 45mpbi 221 . . . . . . . . . . 11 ( I ↾ 𝐴) ⊆ (V × V)
4746sseli 3757 . . . . . . . . . 10 (𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ (V × V))
4847ancri 545 . . . . . . . . 9 (𝑦 ∈ ( I ↾ 𝐴) → (𝑦 ∈ (V × V) ∧ 𝑦 ∈ ( I ↾ 𝐴)))
49 pm3.31 440 . . . . . . . . 9 ((𝑦 ∈ (V × V) → (𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅)) → ((𝑦 ∈ (V × V) ∧ 𝑦 ∈ ( I ↾ 𝐴)) → 𝑦𝑅))
5048, 49syl5 34 . . . . . . . 8 ((𝑦 ∈ (V × V) → (𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅)) → (𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅))
5150alimi 1906 . . . . . . 7 (∀𝑦(𝑦 ∈ (V × V) → (𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅)) → ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅))
5243, 51sylbi 208 . . . . . 6 (∀𝑦 ∈ (V × V)(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅) → ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅))
5342, 52syl 17 . . . . 5 (∀𝑥 ∈ V ∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅))
5411, 53sylbir 226 . . . 4 (∀𝑥(⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅))
55 dfss2 3749 . . . 4 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅))
5654, 55sylibr 225 . . 3 (∀𝑥(⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ( I ↾ 𝐴) ⊆ 𝑅)
57 ssel 3755 . . . 4 (( I ↾ 𝐴) ⊆ 𝑅 → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅))
5857alrimiv 2022 . . 3 (( I ↾ 𝐴) ⊆ 𝑅 → ∀𝑥(⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅))
5956, 58impbii 200 . 2 (∀𝑥(⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) ↔ ( I ↾ 𝐴) ⊆ 𝑅)
601, 8, 593bitr2ri 291 1 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 197   ∧ wa 384  ∀wal 1650   = wceq 1652   ∈ wcel 2155  ∀wral 3055  Vcvv 3350   ⊆ wss 3732  ⟨cop 4340   class class class wbr 4809   I cid 5184   × cxp 5275   ↾ cres 5279  Rel wrel 5282 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062 This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-iun 4678  df-br 4810  df-opab 4872  df-id 5185  df-xp 5283  df-rel 5284  df-res 5289 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator