![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idssxpOLD | Structured version Visualization version GIF version |
Description: Obsolete version of idssxp 5697 as of 9-Sep-2022. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idssxpOLD | ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi 6241 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
2 | fnrel 6222 | . . 3 ⊢ (( I ↾ 𝐴) Fn 𝐴 → Rel ( I ↾ 𝐴)) | |
3 | relssdmrn 5897 | . . 3 ⊢ (Rel ( I ↾ 𝐴) → ( I ↾ 𝐴) ⊆ (dom ( I ↾ 𝐴) × ran ( I ↾ 𝐴))) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (dom ( I ↾ 𝐴) × ran ( I ↾ 𝐴)) |
5 | dmresi 5700 | . . 3 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
6 | rnresi 5720 | . . 3 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
7 | 5, 6 | xpeq12i 5370 | . 2 ⊢ (dom ( I ↾ 𝐴) × ran ( I ↾ 𝐴)) = (𝐴 × 𝐴) |
8 | 4, 7 | sseqtri 3862 | 1 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3798 I cid 5249 × cxp 5340 dom cdm 5342 ran crn 5343 ↾ cres 5344 Rel wrel 5347 Fn wfn 6118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4874 df-opab 4936 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-fun 6125 df-fn 6126 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |