![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isclwwlknonOLD | Structured version Visualization version GIF version |
Description: Obsolete version of isclwwlknon 27264 as of 24-Mar-2022. (Contributed by AV, 25-Feb-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isclwwlknon.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
isclwwlknonOLD | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isclwwlknon.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | clwwlknonOLD 27263 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
3 | 2 | eleq2d 2836 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ 𝑊 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})) |
4 | fveq1 6331 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤‘0) = (𝑊‘0)) | |
5 | 4 | eqeq1d 2773 | . . 3 ⊢ (𝑤 = 𝑊 → ((𝑤‘0) = 𝑋 ↔ (𝑊‘0) = 𝑋)) |
6 | 5 | elrab 3515 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) |
7 | 3, 6 | syl6bb 276 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 {crab 3065 ‘cfv 6031 (class class class)co 6793 0cc0 10138 ℕ0cn0 11494 Vtxcvtx 26095 ClWWalksN cclwwlkn 27174 ClWWalksNOncclwwlknon 27259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-i2m1 10206 ax-1ne0 10207 ax-rrecex 10210 ax-cnre 10211 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-nn 11223 df-n0 11495 df-clwwlknon 27260 |
This theorem is referenced by: clwwlknonelOLD 27270 clwwlknonwwlknonbOLD 27282 |
Copyright terms: Public domain | W3C validator |