Proof of Theorem itsclc0lem5
Step | Hyp | Ref
| Expression |
1 | | itsclc0lem1.q |
. . . . 5
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) |
2 | | itsclc0lem4.d |
. . . . 5
⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) |
3 | 1, 2 | itsclc0lem4 43321 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) |
4 | 3 | imp 397 |
. . 3
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) |
5 | | oveq2 6918 |
. . . . . . . . . . . . 13
⊢ (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → (𝐵 · 𝑌) = (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) |
6 | 5 | oveq2d 6926 |
. . . . . . . . . . . 12
⊢ (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)))) |
7 | 6 | eqeq1d 2827 |
. . . . . . . . . . 11
⊢ (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶)) |
8 | | simp12 1265 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℝ) |
9 | 8 | recnd 10392 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℂ) |
10 | | simp13 1266 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℝ) |
11 | 10 | recnd 10392 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℂ) |
12 | 9, 11 | mulcld 10384 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝐶) ∈ ℂ) |
13 | | simp11l 1387 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℝ) |
14 | 13 | recnd 10392 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℂ) |
15 | | rpre 12127 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℝ) |
16 | 15 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) →
𝑅 ∈
ℝ) |
17 | 16 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑅 ∈
ℝ) |
18 | 17 | resqcld 13338 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑅↑2) ∈
ℝ) |
19 | | simp1l 1258 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ) |
20 | | simp2 1171 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) |
21 | 1 | resum2sqcl 43288 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑄 ∈
ℝ) |
22 | 19, 20, 21 | syl2anc 579 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝑄 ∈ ℝ) |
23 | 22 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑄 ∈
ℝ) |
24 | 18, 23 | remulcld 10394 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑅↑2) · 𝑄) ∈
ℝ) |
25 | | simpl3 1250 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐶 ∈
ℝ) |
26 | 25 | resqcld 13338 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐶↑2) ∈
ℝ) |
27 | 24, 26 | resubcld 10789 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) ∈ ℝ) |
28 | 2, 27 | syl5eqel 2910 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐷 ∈
ℝ) |
29 | 28 | 3adant3 1166 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐷 ∈ ℝ) |
30 | 29 | recnd 10392 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐷 ∈ ℂ) |
31 | 30 | sqrtcld 14560 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) →
(√‘𝐷) ∈
ℂ) |
32 | 14, 31 | mulcld 10384 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · (√‘𝐷)) ∈ ℂ) |
33 | 12, 32 | subcld 10720 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) ∈ ℂ) |
34 | 22 | 3ad2ant1 1167 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑄 ∈ ℝ) |
35 | 34 | recnd 10392 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑄 ∈ ℂ) |
36 | 1 | resum2sqgt0 43289 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 0 < 𝑄) |
37 | 36 | 3adant3 1166 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 < 𝑄) |
38 | 37 | gt0ne0d 10923 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝑄 ≠ 0) |
39 | 38 | 3ad2ant1 1167 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑄 ≠ 0) |
40 | 9, 33, 35, 39 | divassd 11169 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄) = (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) |
41 | 40 | eqcomd 2831 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) = ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) |
42 | 41 | oveq2d 6926 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) = ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄))) |
43 | 11, 35, 39 | divcan3d 11139 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑄 · 𝐶) / 𝑄) = 𝐶) |
44 | 43 | eqcomd 2831 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 = ((𝑄 · 𝐶) / 𝑄)) |
45 | 42, 44 | eqeq12d 2840 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶 ↔ ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄))) |
46 | 35, 11 | mulcld 10384 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑄 · 𝐶) ∈ ℂ) |
47 | 9, 33 | mulcld 10384 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) ∈ ℂ) |
48 | 46, 47, 35, 39 | divsubdird 11173 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) = (((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄))) |
49 | 48 | eqcomd 2831 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄)) |
50 | 49 | eqeq1d 2827 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = (𝐴 · 𝑋) ↔ (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋))) |
51 | 46, 35, 39 | divcld 11134 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑄 · 𝐶) / 𝑄) ∈ ℂ) |
52 | 47, 35, 39 | divcld 11134 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄) ∈ ℂ) |
53 | | simp3l 1262 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℝ) |
54 | 53 | recnd 10392 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℂ) |
55 | 14, 54 | mulcld 10384 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · 𝑋) ∈ ℂ) |
56 | 51, 52, 55 | subadd2d 10739 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = (𝐴 · 𝑋) ↔ ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄))) |
57 | | eqcom 2832 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑄 ·
𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ 𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴)) |
58 | 57 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ 𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴))) |
59 | 46, 47 | subcld 10720 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) ∈ ℂ) |
60 | 59, 35, 39 | divcld 11134 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) ∈ ℂ) |
61 | | simp11r 1388 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ≠ 0) |
62 | 60, 54, 14, 61 | divmul2d 11167 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋))) |
63 | 59, 35, 14, 39, 61 | divdiv1d 11165 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴))) |
64 | 63 | eqeq2d 2835 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
65 | 58, 62, 64 | 3bitr3d 301 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
66 | 50, 56, 65 | 3bitr3d 301 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
67 | 45, 66 | bitrd 271 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶 ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
68 | 7, 67 | sylan9bbr 506 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
69 | 1 | oveq1i 6920 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑄 · 𝐶) = (((𝐴↑2) + (𝐵↑2)) · 𝐶) |
70 | 19 | recnd 10392 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ) |
71 | 70 | sqcld 13307 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴↑2) ∈ ℂ) |
72 | 20 | recnd 10392 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) |
73 | 72 | sqcld 13307 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵↑2) ∈ ℂ) |
74 | | simp3 1172 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) |
75 | 74 | recnd 10392 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
76 | 71, 73, 75 | adddird 10389 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴↑2) + (𝐵↑2)) · 𝐶) = (((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶))) |
77 | 69, 76 | syl5eq 2873 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑄 · 𝐶) = (((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶))) |
78 | 77 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑄 · 𝐶) = (((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶))) |
79 | 72 | adantr 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐵 ∈
ℂ) |
80 | 25 | recnd 10392 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐶 ∈
ℂ) |
81 | 79, 80 | mulcld 10384 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · 𝐶) ∈ ℂ) |
82 | 70 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐴 ∈
ℂ) |
83 | 28 | recnd 10392 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐷 ∈
ℂ) |
84 | 83 | sqrtcld 14560 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) →
(√‘𝐷) ∈
ℂ) |
85 | 82, 84 | mulcld 10384 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · (√‘𝐷)) ∈
ℂ) |
86 | 79, 81, 85 | subdid 10817 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) = ((𝐵 · (𝐵 · 𝐶)) − (𝐵 · (𝐴 · (√‘𝐷))))) |
87 | 72, 72, 75 | mulassd 10387 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 · 𝐵) · 𝐶) = (𝐵 · (𝐵 · 𝐶))) |
88 | | recn 10349 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) |
89 | 88 | sqvald 13306 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐵 ∈ ℝ → (𝐵↑2) = (𝐵 · 𝐵)) |
90 | 89 | 3ad2ant2 1168 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵↑2) = (𝐵 · 𝐵)) |
91 | 90 | eqcomd 2831 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐵) = (𝐵↑2)) |
92 | 91 | oveq1d 6925 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 · 𝐵) · 𝐶) = ((𝐵↑2) · 𝐶)) |
93 | 87, 92 | eqtr3d 2863 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · (𝐵 · 𝐶)) = ((𝐵↑2) · 𝐶)) |
94 | 93 | adantr 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · (𝐵 · 𝐶)) = ((𝐵↑2) · 𝐶)) |
95 | 79, 82, 84 | mul12d 10571 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · (𝐴 · (√‘𝐷))) = (𝐴 · (𝐵 · (√‘𝐷)))) |
96 | 94, 95 | oveq12d 6928 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐵 · (𝐵 · 𝐶)) − (𝐵 · (𝐴 · (√‘𝐷)))) = (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) |
97 | 86, 96 | eqtrd 2861 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) = (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) |
98 | 78, 97 | oveq12d 6928 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) = ((((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷)))))) |
99 | 82 | sqcld 13307 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴↑2) ∈
ℂ) |
100 | 99, 80 | mulcld 10384 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴↑2) · 𝐶) ∈
ℂ) |
101 | 79 | sqcld 13307 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵↑2) ∈
ℂ) |
102 | 101, 80 | mulcld 10384 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐵↑2) · 𝐶) ∈
ℂ) |
103 | 100, 102 | addcomd 10564 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶)) = (((𝐵↑2) · 𝐶) + ((𝐴↑2) · 𝐶))) |
104 | 103 | oveq1d 6925 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) = ((((𝐵↑2) · 𝐶) + ((𝐴↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷)))))) |
105 | 79, 84 | mulcld 10384 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · (√‘𝐷)) ∈
ℂ) |
106 | 82, 105 | mulcld 10384 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · (𝐵 · (√‘𝐷))) ∈ ℂ) |
107 | 102, 100,
106 | pnncand 10759 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐵↑2) · 𝐶) + ((𝐴↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) = (((𝐴↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) |
108 | 98, 104, 107 | 3eqtrd 2865 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) = (((𝐴↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) |
109 | 108 | oveq1d 6925 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) = ((((𝐴↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷)))) / (𝑄 · 𝐴))) |
110 | 70 | sqvald 13306 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴↑2) = (𝐴 · 𝐴)) |
111 | 110 | oveq1d 6925 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴↑2) · 𝐶) = ((𝐴 · 𝐴) · 𝐶)) |
112 | 70, 70, 75 | mulassd 10387 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐴) · 𝐶) = (𝐴 · (𝐴 · 𝐶))) |
113 | 111, 112 | eqtrd 2861 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴↑2) · 𝐶) = (𝐴 · (𝐴 · 𝐶))) |
114 | 113 | adantr 474 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴↑2) · 𝐶) = (𝐴 · (𝐴 · 𝐶))) |
115 | 114 | oveq1d 6925 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷)))) = ((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷))))) |
116 | 23 | recnd 10392 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑄 ∈
ℂ) |
117 | 116, 82 | mulcomd 10385 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑄 · 𝐴) = (𝐴 · 𝑄)) |
118 | 115, 117 | oveq12d 6928 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐴↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷)))) / (𝑄 · 𝐴)) = (((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄))) |
119 | 82, 80 | mulcld 10384 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · 𝐶) ∈ ℂ) |
120 | 82, 119, 105 | adddid 10388 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷)))) = ((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷))))) |
121 | 120 | eqcomd 2831 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷)))) = (𝐴 · ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))))) |
122 | 121 | oveq1d 6925 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = ((𝐴 · ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄))) |
123 | 119, 105 | addcld 10383 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) ∈ ℂ) |
124 | 38 | adantr 474 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑄 ≠ 0) |
125 | | simpl1r 1299 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐴 ≠ 0) |
126 | 123, 116,
82, 124, 125 | divcan5d 11160 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)) |
127 | 122, 126 | eqtrd 2861 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)) |
128 | 109, 118,
127 | 3eqtrd 2865 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)) |
129 | 128 | eqeq2d 2835 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) ↔ 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) |
130 | 129 | biimpd 221 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) |
131 | 130 | 3adant3 1166 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) |
132 | 131 | adantr 474 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) |
133 | 68, 132 | sylbid 232 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) |
134 | 133 | ex 403 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)))) |
135 | 134 | com23 86 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)))) |
136 | 135 | adantld 486 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)))) |
137 | 136 | imp 397 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) |
138 | 137 | ancrd 547 |
. . . 4
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → (𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)))) |
139 | | oveq2 6918 |
. . . . . . . . . . . . 13
⊢ (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → (𝐵 · 𝑌) = (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) |
140 | 139 | oveq2d 6926 |
. . . . . . . . . . . 12
⊢ (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) |
141 | 140 | eqeq1d 2827 |
. . . . . . . . . . 11
⊢ (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶)) |
142 | 12, 32 | addcld 10383 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) ∈ ℂ) |
143 | 9, 142, 35, 39 | divassd 11169 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄) = (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) |
144 | 143 | eqcomd 2831 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) = ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) |
145 | 144 | oveq2d 6926 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) = ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄))) |
146 | 145, 44 | eqeq12d 2840 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶 ↔ ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄))) |
147 | 9, 142 | mulcld 10384 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) ∈ ℂ) |
148 | 46, 147, 35, 39 | divsubdird 11173 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) = (((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄))) |
149 | 148 | eqcomd 2831 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄)) |
150 | 149 | eqeq1d 2827 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = (𝐴 · 𝑋) ↔ (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋))) |
151 | 147, 35, 39 | divcld 11134 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄) ∈ ℂ) |
152 | 51, 151, 55 | subadd2d 10739 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = (𝐴 · 𝑋) ↔ ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄))) |
153 | | eqcom 2832 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑄 ·
𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ 𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴)) |
154 | 153 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ 𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴))) |
155 | 46, 147 | subcld 10720 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) ∈ ℂ) |
156 | 155, 35, 39 | divcld 11134 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) ∈ ℂ) |
157 | 156, 54, 14, 61 | divmul2d 11167 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋))) |
158 | 155, 35, 14, 39, 61 | divdiv1d 11165 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴))) |
159 | 158 | eqeq2d 2835 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
160 | 154, 157,
159 | 3bitr3d 301 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
161 | 150, 152,
160 | 3bitr3d 301 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
162 | 146, 161 | bitrd 271 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶 ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
163 | 141, 162 | sylan9bbr 506 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
164 | 79, 81, 85 | adddid 10388 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) = ((𝐵 · (𝐵 · 𝐶)) + (𝐵 · (𝐴 · (√‘𝐷))))) |
165 | 94, 95 | oveq12d 6928 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐵 · (𝐵 · 𝐶)) + (𝐵 · (𝐴 · (√‘𝐷)))) = (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) |
166 | 164, 165 | eqtrd 2861 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) = (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) |
167 | 78, 166 | oveq12d 6928 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) = ((((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷)))))) |
168 | 103 | oveq1d 6925 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) = ((((𝐵↑2) · 𝐶) + ((𝐴↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷)))))) |
169 | 102, 100,
106 | pnpcand 10757 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐵↑2) · 𝐶) + ((𝐴↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) = (((𝐴↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) |
170 | 167, 168,
169 | 3eqtrd 2865 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) = (((𝐴↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) |
171 | 170 | oveq1d 6925 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) = ((((𝐴↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷)))) / (𝑄 · 𝐴))) |
172 | 114 | oveq1d 6925 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷)))) = ((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷))))) |
173 | 172, 117 | oveq12d 6928 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐴↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷)))) / (𝑄 · 𝐴)) = (((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄))) |
174 | 82, 119, 105 | subdid 10817 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷)))) = ((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷))))) |
175 | 174 | eqcomd 2831 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷)))) = (𝐴 · ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))))) |
176 | 175 | oveq1d 6925 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = ((𝐴 · ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄))) |
177 | 119, 105 | subcld 10720 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) ∈ ℂ) |
178 | 177, 116,
82, 124, 125 | divcan5d 11160 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)) |
179 | 176, 178 | eqtrd 2861 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)) |
180 | 171, 173,
179 | 3eqtrd 2865 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)) |
181 | 180 | eqeq2d 2835 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) ↔ 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) |
182 | 181 | biimpd 221 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) |
183 | 182 | 3adant3 1166 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) |
184 | 183 | adantr 474 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) |
185 | 163, 184 | sylbid 232 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) |
186 | 185 | ex 403 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)))) |
187 | 186 | com23 86 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)))) |
188 | 187 | adantld 486 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)))) |
189 | 188 | imp 397 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) |
190 | 189 | ancrd 547 |
. . . 4
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) |
191 | 138, 190 | orim12d 992 |
. . 3
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → ((𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
192 | 4, 191 | mpd 15 |
. 2
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) |
193 | 192 | ex 403 |
1
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |