Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunxsngf2 Structured version   Visualization version   GIF version

Theorem iunxsngf2 40154
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
iunxsngf2.1 𝑥𝐶
iunxsngf2.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iunxsngf2 (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem iunxsngf2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 4757 . . 3 (𝑦 𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑥 ∈ {𝐴}𝑦𝐵)
2 iunxsngf2.1 . . . . 5 𝑥𝐶
32nfcri 2928 . . . 4 𝑥 𝑦𝐶
4 iunxsngf2.2 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
54eleq2d 2844 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
63, 5rexsngf 4440 . . 3 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝑦𝐵𝑦𝐶))
71, 6syl5bb 275 . 2 (𝐴𝑉 → (𝑦 𝑥 ∈ {𝐴}𝐵𝑦𝐶))
87eqrdv 2775 1 (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2106  wnfc 2918  wrex 3090  {csn 4397   ciun 4753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-v 3399  df-sbc 3652  df-sn 4398  df-iun 4755
This theorem is referenced by:  iunxsnf  40157
  Copyright terms: Public domain W3C validator