Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  map0eOLD Structured version   Visualization version   GIF version

Theorem map0eOLD 8134
 Description: Obsolete proof of map0e 8133 as of 14-Jul-2022. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
map0eOLD (𝐴𝑉 → (𝐴𝑚 ∅) = 1𝑜)

Proof of Theorem map0eOLD
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ex 4984 . . . 4 ∅ ∈ V
2 elmapg 8108 . . . 4 ((𝐴𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐴𝑚 ∅) ↔ 𝑓:∅⟶𝐴))
31, 2mpan2 683 . . 3 (𝐴𝑉 → (𝑓 ∈ (𝐴𝑚 ∅) ↔ 𝑓:∅⟶𝐴))
4 f0bi 6303 . . . 4 (𝑓:∅⟶𝐴𝑓 = ∅)
5 el1o 7819 . . . 4 (𝑓 ∈ 1𝑜𝑓 = ∅)
64, 5bitr4i 270 . . 3 (𝑓:∅⟶𝐴𝑓 ∈ 1𝑜)
73, 6syl6bb 279 . 2 (𝐴𝑉 → (𝑓 ∈ (𝐴𝑚 ∅) ↔ 𝑓 ∈ 1𝑜))
87eqrdv 2797 1 (𝐴𝑉 → (𝐴𝑚 ∅) = 1𝑜)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   = wceq 1653   ∈ wcel 2157  Vcvv 3385  ∅c0 4115  ⟶wf 6097  (class class class)co 6878  1𝑜c1o 7792   ↑𝑚 cmap 8095 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-1o 7799  df-map 8097 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator