![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdm0OLD | Structured version Visualization version GIF version |
Description: Obsolete version of mapdm0 8110 as of 3-Dec-2021. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mapdm0OLD | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4984 | . . . . . 6 ⊢ ∅ ∈ V | |
2 | elmapg 8108 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐴 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐴)) | |
3 | 1, 2 | mpan2 683 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑓 ∈ (𝐴 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐴)) |
4 | 3 | biimpa 469 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (𝐴 ↑𝑚 ∅)) → 𝑓:∅⟶𝐴) |
5 | f0bi 6303 | . . . 4 ⊢ (𝑓:∅⟶𝐴 ↔ 𝑓 = ∅) | |
6 | 4, 5 | sylib 210 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (𝐴 ↑𝑚 ∅)) → 𝑓 = ∅) |
7 | 6 | ralrimiva 3147 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑓 ∈ (𝐴 ↑𝑚 ∅)𝑓 = ∅) |
8 | f0 6301 | . . . . . 6 ⊢ ∅:∅⟶𝐴 | |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ∅:∅⟶𝐴) |
10 | id 22 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
11 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ∅ ∈ V) |
12 | elmapg 8108 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V) → (∅ ∈ (𝐴 ↑𝑚 ∅) ↔ ∅:∅⟶𝐴)) | |
13 | 10, 11, 12 | syl2anc 580 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (∅ ∈ (𝐴 ↑𝑚 ∅) ↔ ∅:∅⟶𝐴)) |
14 | 9, 13 | mpbird 249 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∅ ∈ (𝐴 ↑𝑚 ∅)) |
15 | ne0i 4121 | . . . 4 ⊢ (∅ ∈ (𝐴 ↑𝑚 ∅) → (𝐴 ↑𝑚 ∅) ≠ ∅) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) ≠ ∅) |
17 | eqsn 4548 | . . 3 ⊢ ((𝐴 ↑𝑚 ∅) ≠ ∅ → ((𝐴 ↑𝑚 ∅) = {∅} ↔ ∀𝑓 ∈ (𝐴 ↑𝑚 ∅)𝑓 = ∅)) | |
18 | 16, 17 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ↑𝑚 ∅) = {∅} ↔ ∀𝑓 ∈ (𝐴 ↑𝑚 ∅)𝑓 = ∅)) |
19 | 7, 18 | mpbird 249 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∀wral 3089 Vcvv 3385 ∅c0 4115 {csn 4368 ⟶wf 6097 (class class class)co 6878 ↑𝑚 cmap 8095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-map 8097 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |