Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mgplem | Structured version Visualization version GIF version |
Description: Lemma for mgpbas 19376. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgplem.2 | ⊢ 𝐸 = Slot 𝑁 |
mgplem.3 | ⊢ 𝑁 ∈ ℕ |
mgplem.4 | ⊢ 𝑁 ≠ 2 |
Ref | Expression |
---|---|
mgplem | ⊢ (𝐸‘𝑅) = (𝐸‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgplem.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | mgplem.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 16624 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | mgplem.4 | . . . 4 ⊢ 𝑁 ≠ 2 | |
5 | 1, 2 | ndxarg 16623 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 |
6 | plusgndx 16710 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
7 | 5, 6 | neeq12i 3001 | . . . 4 ⊢ ((𝐸‘ndx) ≠ (+g‘ndx) ↔ 𝑁 ≠ 2) |
8 | 4, 7 | mpbir 234 | . . 3 ⊢ (𝐸‘ndx) ≠ (+g‘ndx) |
9 | 3, 8 | setsnid 16654 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
10 | mgpbas.1 | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑅) | |
11 | eqid 2739 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
12 | 10, 11 | mgpval 19373 | . . 3 ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉) |
13 | 12 | fveq2i 6689 | . 2 ⊢ (𝐸‘𝑀) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
14 | 9, 13 | eqtr4i 2765 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2114 ≠ wne 2935 〈cop 4532 ‘cfv 6349 (class class class)co 7182 ℕcn 11728 2c2 11783 ndxcnx 16595 sSet csts 16596 Slot cslot 16597 +gcplusg 16680 .rcmulr 16681 mulGrpcmgp 19370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-1cn 10685 ax-addcl 10687 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-ov 7185 df-oprab 7186 df-mpo 7187 df-om 7612 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-nn 11729 df-2 11791 df-ndx 16601 df-slot 16602 df-sets 16605 df-plusg 16693 df-mgp 19371 |
This theorem is referenced by: mgpbas 19376 mgpsca 19377 mgptset 19378 mgpds 19380 |
Copyright terms: Public domain | W3C validator |