Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mo3OLD Structured version   Visualization version   GIF version

Theorem mo3OLD 2634
 Description: Obsolete version of mo3 2633 as of 29-Jan-2023. (Contributed by NM, 8-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Aug-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
mo3.nf 𝑦𝜑
Assertion
Ref Expression
mo3OLD (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem mo3OLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfmo1 2626 . . 3 𝑥∃*𝑥𝜑
2 mo3.nf . . . . 5 𝑦𝜑
32nfmo 2630 . . . 4 𝑦∃*𝑥𝜑
4 df-mo 2605 . . . . 5 (∃*𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
5 sp 2224 . . . . . . . 8 (∀𝑥(𝜑𝑥 = 𝑧) → (𝜑𝑥 = 𝑧))
6 spsbim 2525 . . . . . . . . 9 (∀𝑥(𝜑𝑥 = 𝑧) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝑥 = 𝑧))
7 equsb3 2565 . . . . . . . . 9 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
86, 7syl6ib 243 . . . . . . . 8 (∀𝑥(𝜑𝑥 = 𝑧) → ([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
95, 8anim12d 602 . . . . . . 7 (∀𝑥(𝜑𝑥 = 𝑧) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝑥 = 𝑧𝑦 = 𝑧)))
10 equtr2 2131 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑧) → 𝑥 = 𝑦)
119, 10syl6 35 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑧) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
1211exlimiv 2029 . . . . 5 (∃𝑧𝑥(𝜑𝑥 = 𝑧) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
134, 12sylbi 209 . . . 4 (∃*𝑥𝜑 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
143, 13alrimi 2256 . . 3 (∃*𝑥𝜑 → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
151, 14alrimi 2256 . 2 (∃*𝑥𝜑 → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
16 nfs1v 2311 . . . . . . . 8 𝑥[𝑦 / 𝑥]𝜑
17 pm3.21 465 . . . . . . . . 9 ([𝑦 / 𝑥]𝜑 → (𝜑 → (𝜑 ∧ [𝑦 / 𝑥]𝜑)))
1817imim1d 82 . . . . . . . 8 ([𝑦 / 𝑥]𝜑 → (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (𝜑𝑥 = 𝑦)))
1916, 18alimd 2255 . . . . . . 7 ([𝑦 / 𝑥]𝜑 → (∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))
2019com12 32 . . . . . 6 (∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑𝑥 = 𝑦)))
2120aleximi 1930 . . . . 5 (∀𝑦𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (∃𝑦[𝑦 / 𝑥]𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
222sb8e 2557 . . . . 5 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
232mof 2631 . . . . 5 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2421, 22, 233imtr4g 288 . . . 4 (∀𝑦𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃*𝑥𝜑))
25 moabs 2609 . . . 4 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑))
2624, 25sylibr 226 . . 3 (∀𝑦𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃*𝑥𝜑)
2726alcoms 2208 . 2 (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃*𝑥𝜑)
2815, 27impbii 201 1 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386  ∀wal 1654  ∃wex 1878  Ⅎwnf 1882  [wsb 2067  ∃*wmo 2603 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605 This theorem is referenced by:  mo4fOLD  2637
 Copyright terms: Public domain W3C validator