![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mobiOLDOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of mobi 2560 as of 15-Oct-2022. (Contributed by BJ, 7-Oct-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mobiOLDOLD | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃*𝑥𝜑 ↔ ∃*𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi1 339 | . . . . . 6 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜓 → 𝑥 = 𝑦))) | |
2 | 1 | alimi 1855 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ∀𝑥((𝜑 → 𝑥 = 𝑦) ↔ (𝜓 → 𝑥 = 𝑦))) |
3 | albi 1862 | . . . . 5 ⊢ (∀𝑥((𝜑 → 𝑥 = 𝑦) ↔ (𝜓 → 𝑥 = 𝑦)) → (∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜓 → 𝑥 = 𝑦))) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜓 → 𝑥 = 𝑦))) |
5 | 4 | alrimiv 1970 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ∀𝑦(∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜓 → 𝑥 = 𝑦))) |
6 | exbi 1891 | . . 3 ⊢ (∀𝑦(∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜓 → 𝑥 = 𝑦)) → (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦))) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦))) |
8 | df-mo 2551 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
9 | df-mo 2551 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦)) | |
10 | 7, 8, 9 | 3bitr4g 306 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃*𝑥𝜑 ↔ ∃*𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1599 ∃wex 1823 ∃*wmo 2549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 |
This theorem depends on definitions: df-bi 199 df-ex 1824 df-mo 2551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |