![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moeqOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of moeq 3612 as of 24-Sep-2022. (Contributed by NM, 8-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
moeqOLD | ⊢ ∃*𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 3427 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
2 | eueqOLD 3614 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | sylbb1 229 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴) |
4 | moeu 2601 | . 2 ⊢ (∃*𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴)) | |
5 | 3, 4 | mpbir 223 | 1 ⊢ ∃*𝑥 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∃wex 1742 ∈ wcel 2050 ∃*wmo 2545 ∃!weu 2582 Vcvv 3415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-v 3417 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |